首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Comparison between two meshless methods based on collocation technique for the numerical solution of four-species tumor growth model
【24h】

Comparison between two meshless methods based on collocation technique for the numerical solution of four-species tumor growth model

机译:两种基于搭配技术的无网格四种肿瘤生长模型数值解的比较

获取原文
获取原文并翻译 | 示例

摘要

As is said in [27], the tumor-growth model is the incorporation of nutrient within the mixture as opposed to being modeled with an auxiliary reaction-diffusion equation. The formulation involves systems of highly nonlinear partial differential equations of surface effects through diffuse-interface models [27]. Simulations of this practical model using numerical methods can be applied for evaluating it. The present paper investigates the solution of the tumor growth model with meshless techniques. Meshless methods are applied based on the collocation technique which employ multiquadrics (MQ) radial basis function (RBFs) and generalized moving least squares (GMLS) procedures. The main advantages of these choices come back to the natural behavior of meshless approaches. As well as, a method based on meshless approach can be applied easily for finding the solution of partial differential equations in high-dimension using any distributions of points on regular and irregular domains. The present paper involves a time-dependent system of partial differential equations that describes four-species tumor growth model. To overcome the time variable, two procedures will be used. One of them is a semi-implicit finite difference method based on Crank-Nicolson scheme and another one is based on explicit Runge-Kutta time integration. The first case gives a linear system of algebraic equations which will be solved at each time-step. The second case will be efficient but conditionally stable. The obtained numerical results are reported to confirm the ability of these techniques for solving the two and three-dimensional tumor-growth equations. (C) 2016 Published by Elsevier B.V.
机译:如[27]所述,肿瘤生长模型是混合物中营养物的掺入,而不是用辅助反应扩散方程式进行建模。该公式涉及通过扩散界面模型[27]的表面效应的高度非线性偏微分方程系统。可以使用数值方法对该实用模型进行仿真,以对其进行评估。本文研究了用无网格技术解决肿瘤生长模型的问题。基于搭配技术的无网格方法得到应用,该搭配技术采用多二次方(MQ)径向基函数(RBF)和广义移动最小二乘(GMLS)程序。这些选择的主要优点回到无网格方法的自然行为。而且,基于无网格方法的方法可以很容易地应用到使用规则和不规则域上点的任何分布来寻找高维偏微分方程的解。本文涉及描述四种肿瘤生长模型的偏微分方程的时变系统。为了克服时间变量,将使用两个过程。一种是基于Crank-Nicolson方案的半隐式有限差分方法,另一种是基于显式Runge-Kutta时间积分的方法。第一种情况给出了代数方程的线性系统,它将在每个时间步求解。第二种情况将是有效的,但条件上是稳定的。据报道,获得的数值结果证实了这些技术解决二维和三维肿瘤生长方程的能力。 (C)2016由Elsevier B.V.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号