首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >A spatial fractional seepage model for the flow of non-Newtonian fluid in fractal porous medium
【24h】

A spatial fractional seepage model for the flow of non-Newtonian fluid in fractal porous medium

机译:分形多孔介质中非牛顿流体流动的空间分数渗流模型

获取原文
获取原文并翻译 | 示例

摘要

In the present study, a fractional seepage model (FSM) is proposed for non-Newtonian fluid via spatial fractional derivative to characterize the non-local characteristics of the non Newtonian fluid in space and the fractal attributes of the porous medium. The analytical expressions of the permeability and the resistance are derived, in which each parameter contains clear physical meaning. The comparison between the empirical equations and our model with respect to available experimental data verifies the predictive capability of the proposed model. In addition, this study makes the first attempt to bridge the relation between the fractional derivative order and the fractal dimension of tortuosity, and may reveal the correlation between the memory of the complex fluid and characteristic pattern of the microstructure. (C) 2018 Elsevier B.V. All rights reserved.
机译:在本研究中,通过空间分数导数,提出了一种针对非牛顿流体的分数渗流模型(FSM),以表征非牛顿流体在空间中的非局部特征以及多孔介质的分形特征。推导了磁导率和电阻的解析表达式,其中每个参数都具有明确的物理意义。经验方程与我们的模型之间关于可用实验数据的比较验证了所提出模型的预测能力。此外,本研究首次尝试在分数阶导数阶与曲率的分形维数之间建立联系,并可能揭示复杂流体的记忆与微观结构特征模式之间的相关性。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号