首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Numerical solution of the state-delayed optimal control problems by a fast and accurate finite difference θ-method
【24h】

Numerical solution of the state-delayed optimal control problems by a fast and accurate finite difference θ-method

机译:快速准确的有限差分θ法求解时滞最优控制问题的数值解

获取原文
获取原文并翻译 | 示例

摘要

Highlights Linear and nonlinear state-delayed optimal control problem is solved by an accurate and fast finite difference θ-method. The proposed method satisfies the necessary conditions of nonlinear state-delayed optimal control problem. Error analysis and a matrix formulation of the proposed method are provided. To solve the infinite-time horizon time-delayed optimal control problems, a piecewise version of the θ-method is formulated. Abstract Using the Pontryagin’s maximum principle for a time-delayed optimal control problem results in a system of coupled two-point boundary-value problems (BVPs) involving both time-advance and time-delay arguments. The analytical solution of this advance-delay two-point BVP is extremely difficult, if not impossible. This paper provides a discrete general form of the numerical solution for the derived advance-delay system by applying a finite difference θ-method. This method is also implemented for the infinite-time horizon time-delayed optimal control problems by using a piecewise version of the θ-method. A matrix formulation and the error analysis of the suggested technique are provided. The new scheme is accurate, fast and very effective for the optimal control of linear and nonlinear time-delay systems. Various types of finite- and infinite-time horizon problems are included to demonstrate the accuracy, validity and applicability of the new technique.
机译: 突出显示 线性和非线性状态延迟的最优控制问题是通过精确且快速的有限差分θ-方法解决的。 / ce:para> 提出的方法满足非线性状态延迟最优控制问题的必要条件。 误差分析和矩阵矩阵表示法 为解决无限时域时滞最优控制问题,制定了θ方法的分段版本。 摘要 将Pontryagin的最大原理用于时滞最优控制问题会导致一个包含两个时间提前量的耦合两点边值问题(BVP)系统和延时参数。即使不是不可能,这种提前延迟两点BVP的解析解决方案也非常困难。本文通过应用有限差分法θ-方法为导出的超前-时滞系统提供了离散的数值解形式。通过使用分段形式的θ-方法,该方法也可用于无限时域时滞最优控制问题。提供了矩阵表述和所建议技术的误差分析。该新方案对于线性和非线性时滞系统的最佳控制是准确,快速且非常有效的。包括各种类型的有限和无限时间视界问题,以证明该新技术的准确性,有效性和适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号