首页> 外文期刊>Communications in Mathematical Physics >A Construction of Einstein-Weyl Spaces via LeBrun-Mason Type Twistor Correspondence
【24h】

A Construction of Einstein-Weyl Spaces via LeBrun-Mason Type Twistor Correspondence

机译:通过LeBrun-Mason型扭转子对应关系构造爱因斯坦-魏尔空间

获取原文
获取原文并翻译 | 示例

摘要

We construct infinitely many Einstein-Weyl structures on of signature (− + +) which is sufficiently close to the model case of constant curvature, and on which the space-like geodesics are all closed. Such a structure is obtained as a parameter space of a family of holomorphic disks which is associated to a small perturbation of the diagonal of . The geometry of constructed Einstein-Weyl spaces is well understood from the configuration of holomorphic disks. We also review Einstein-Weyl structures and their properties in the former half of this article. Communicated by G.W. Gibbons
机译:我们在签名(-+ +)上构造了无限多个爱因斯坦-魏尔结构,该结构足够接近恒定曲率的模型情况,并且所有类似空间的测地线都闭合。获得这样的结构作为全同形圆盘族的参数空间,该空间与的对角线的小扰动有关。从全同形圆盘的构造可以很好地理解构造出的爱因斯坦-魏尔空间的几何形状。在本文的上半部分,我们还将回顾爱因斯坦-魏尔结构及其性质。由G.W.长臂猿

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号