首页> 外文期刊>Communications, IEEE Transactions on >Cost-Efficient QoS-Aware Data Acquisition Point Placement for Advanced Metering Infrastructure
【24h】

Cost-Efficient QoS-Aware Data Acquisition Point Placement for Advanced Metering Infrastructure

机译:用于高级计量基础架构的经济高效的QoS感知数据采集点放置

获取原文
获取原文并翻译 | 示例

摘要

In an advanced metering infrastructure (AMI), data acquisition points (DAPs) are responsible for collecting traffic from several smart meters and automated devices and transmitting them to the utility control center. Although the problem of optimized data collector placement has already been addressed for wireless broadband and sensor networks, the DAP placement is quite a new research area for AMIs. In this paper, we investigate the minimum required number of DAPs and their optimized locations on top of the existing utility poles in a distribution grid, such that the smart grid quality of service requirements can best be provided. In order to solve the problem for large-scale AMIs, we devise a novel heuristic algorithm using a greedy approach for identifying potential pole locations for the DAP placement and the Dijkstra’s shortest path algorithm for constructing reliable routes. We employ the characteristics of medium access schemes from the IEEE 802.15.4g smart utility network (SUN) standard and consider mission-critical and non-critical smart grid traffic. The performance and the time complexity of our algorithm are compared with those obtained by the IBM CPLEX software for small scenarios. Finally, we apply our devised DAP placement algorithm to examples of realistic smart grid AMI topologies.
机译:在先进的计量基础架构(AMI)中,数据采集点(DAP)负责从多个智能电表和自动化设备收集流量,并将其传输到公用事业控制中心。尽管针对无线宽带和传感器网络已经解决了优化数据收集器放置的问题,但是DAP放置对于AMI来说是一个新的研究领域。在本文中,我们研究了DAP的最低要求数量及其在配电网中现有电线杆顶部的优化位置,从而可以最好地满足智能电网的服务质量要求。为了解决大规模AMI的问题,我们设计了一种新颖的启发式算法,该算法使用贪婪方法来识别DAP放置的潜在极点位置,并设计出Dijkstra最短路径算法来构建可靠的路线。我们采用IEEE 802.15.4g智能公用事业网络(SUN)标准中的媒体访问方案的特征,并考虑任务关键型和非关键型智能电网流量。将我们的算法的性能和时间复杂度与IBM CPLEX软件在小型场景下获得的性能和时间复杂度进行了比较。最后,我们将设计好的DAP放置算法应用于实际的智能网格AMI拓扑的示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号