首页> 外文期刊>Combustion Theory and Modelling >An efficient approach of unsteady flamelet modeling of a cross-flow-jet combustion system using LES
【24h】

An efficient approach of unsteady flamelet modeling of a cross-flow-jet combustion system using LES

机译:使用LES的错流射流燃烧系统非稳定小火焰建模的有效方法

获取原文
获取原文并翻译 | 示例

摘要

Steady flamelet models have been widely used in turbulent combustion simulations because of their simplicity, efficiency, yet physics-based nature. They are, however, unable to handle slow chemical and physical processes such as pollutant formation. Unsteady flamelet models have been shown to be able to provide accurate predictions especially for pollutants, but their implementations are usually not as straightforward as for the steady models, and additional assumptions are involved. One relatively straightforward approach of implementing the unsteady flamelet model is to tabulate the time history of unsteady flamelet solutions. This often leads to flamelet libraries of large sizes because of increased dimensions for the new physics. The purpose of this paper is to introduce a new and efficient approach of tabulating unsteady flamelet solutions in the LES of complex systems, here demonstrated in simulations of a cross-flow-jet combustion system. This approach employs Taylor series expansions to represent the time history of unsteady flamelet solutions. Compared with other approaches, the new approach retains the efficiency and simplicity benefits of steady flamelet models but possesses the accuracy of unsteady flamelet models. Various issues associated with the formulation and implementation of this approach are discussed, which include the selection of the base solution, the order of accuracy of the expansion, and the treatment of simultaneous wall heat losses and heat transfer through thermal radiation. This approach is validated in large eddy simulations of a cross-flow-jet combustion system. Good agreement with experiments is obtained for both temperature and NO concentration, as well as for major species.
机译:稳定的小火焰模型由于其简单性,效率和基于物理的性质而被广泛用于湍流燃烧模拟中。但是,它们无法处理缓慢的化学和物理过程,例如污染物的形成。非稳定小火焰模型已被证明能够提供准确的预测,尤其是对于污染物,但是它们的实现通常不如稳定模型那么简单,并且涉及其他假设。实现不稳定小火焰模型的一种相对直接的方法是将不稳定小火焰解决方案的时间历史列表化。由于新物理的尺寸增加,这通常导致大尺寸的火焰小库。本文的目的是介绍一种在复杂系统的LES中将不稳定小火焰解决方案制成表格的新有效方法,此处在横流喷射燃烧系统的仿真中得到了证明。这种方法采用泰勒级数展开来表示非稳定小火焰解的时间历史。与其他方法相比,新方法保留了稳定小火焰模型的效率和简单性优点,但具有非稳定小火焰模型的准确性。讨论了与该方法的制定和实施相关的各种问题,包括基本解决方案的选择,膨胀精度的顺序以及同时进行的壁面热损失和通过热辐射的热传递的处理。这种方法在横流喷射燃烧系统的大型涡流仿真中得到了验证。在温度,NO浓度以及主要种类方面都与实验取得了很好的一致性。

著录项

  • 来源
    《Combustion Theory and Modelling》 |2011年第6期|p.849-862|共14页
  • 作者单位

    United Technologies Research Center, East Hartford, CT, 06108, USA;

    Center for Turbulence Research, Stanford University, Stanford, CA, 94305-3035, USA;

    Energy and Environmental Systems Laboratory, Hitachi Ltd. Horiguchi, 312-8507, Hitachinaka, Japan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号