...
首页> 外文期刊>Combustion Science and Technology >EXPERIMENTAL STUDY AND DETAILED KINETIC MODELING OF THE MUTUAL SENSITIZATION OF THE OXIDATION OF NITRIC OXIDE, ETHYLENE, AND ETHANE
【24h】

EXPERIMENTAL STUDY AND DETAILED KINETIC MODELING OF THE MUTUAL SENSITIZATION OF THE OXIDATION OF NITRIC OXIDE, ETHYLENE, AND ETHANE

机译:一氧化氮,乙烯和乙烷的相互敏化的实验研究和详细的动力学模型

获取原文
获取原文并翻译 | 示例
           

摘要

New experimental results were obtained for the mutual sensitization of the oxidation of NO and ethane and NO and ethylene in fuel-lean conditions. An atmospheric fused-silica jet-stirred reactor operating over the temperature range 700-1150 K was used. The initial carbon mole fraction was 2500 ppm whereas that of NO varied from 0 to 1200 ppm. Sonic quartz probe sampling followed by on-line Fourier transform infrared analyses and off-line gas chromatography-thermal conductivity detection flame ionization detection analyses were used to measure the concentration profiles of the reactants, stable intermediates, and the final products. A detailed chemical kinetic modeling of the present experiments was performed (147 species, 1085 reversible reactions). An overall good agreement between the present data and modeling was obtained. Furthermore, the proposed model was able to simulate, better than in previous modeling efforts, plug-flow reactor experimental results available in the literature. According to the proposed model, the mutual sensitization of the oxidation of ethane or ethylene and NO proceeds mostly through the conversion of NO to NO_2 by HO_2 radicals. The NO-to-NO_2 conversion is enhanced by the production of HO_2 radicals from the oxidation of the fuel. The production of OH resulting from the oxidation of NO by the hydroperoxy radical promotes the oxidation of the fuel: NO + HO_2 => OH + NO_2 is followed by OH + C_2H_2 => C_2H_3 + H_2O and OH + C_2H_6 => C_2H_5 + H_2O. In the case of ethane, at low temperature, the reaction further proceeds via CH_3 + O_2 => CH_3O_2; CH_3O_2 + NO => CH_3O + NO_2; C_2H_5O_2 + NO => C_2H_5O + NO_2; C_2H_5 + O_2 => C_2H_4 + HO_2. At higher temperature, the sequence is followed by CH_3O => CH_2O + H; C_2H_5O => CH_3CHO + H; C_2H_5O => CH_3 + CH_2O; CH_2O + OH => HCO + H_2O; HCO + O_2 => HO_2 + CO; and H + O_2 => HO_2. In the case of ethylene, the reaction further proceeds via C_2H_3 + O_2 => CH_2O + HCO; CH_2O + OH => HCO + H_2O; HCO + O_2 => HO_2 + CO; and H + O_2 + M => HO_2 + M. The main chemical kinetic differences between the two fuels in presence of NO were analyzed.
机译:在稀燃条件下,NO和乙烷以及NO和乙烯的氧化相互敏化获得了新的实验结果。使用在700-1150K的温度范围内操作的常压熔融二氧化硅喷射搅拌反应器。初始碳摩尔分数为2500ppm,而NO的初始碳摩尔分数为0-1200ppm。声波石英探针采样,然后进行在线傅立叶变换红外分析和离线气相色谱-热导率检测火焰电离检测分析,用于测量反应物,稳定的中间体和最终产物的浓度曲线。进行了本实验的详细化学动力学建模(147种,1085可逆反应)。在当前数据和建模之间获得了总体良好的一致性。此外,与以前的建模工作相比,所提出的模型能够更好地模拟文献中提供的活塞流反应器实验结果。根据提出的模型,乙烷或乙烯与NO的氧化相互敏化主要通过HO_2自由基将NO转化为NO_2来进行。由燃料的氧化产生的HO_2自由基可增强NO至NO_2的转化。由氢过氧自由基氧化NO产生的OH促进了燃料的氧化:NO + HO_2 => OH + NO_2之后是OH + C_2H_2 => C_2H_3 + H_2O和OH + C_2H_6 => C_2H_5 + H_2O。在乙烷的情况下,在低温下,反应通过CH_3 + O_2 => CH_3O_2进一步进行; CH_3O_2 + NO => CH_3O + NO_2; C_2H_5O_2 + NO => C_2H_5O + NO_2; C_2H_5 + O_2 => C_2H_4 + HO_2。在较高温度下,该序列后接CH_3O => CH_2O + H; C_2H_5O => CH_3CHO + H; C_2H_5O => CH_3 + CH_2O; CH_2O + OH => HCO + H_2O; HCO + O_2 => HO_2 + CO;和H + O_2 => HO_2。在乙烯的情况下,反应通过C_2H_3 + O_2 => CH_2O + HCO进一步进行; CH_2O + OH => HCO + H_2O; HCO + O_2 => HO_2 + CO;和H + O_2 + M => HO_2 +M。分析了两种燃料在NO存在下的主要化学动力学差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号