首页> 外文期刊>The journal of physical chemistry, A. Molecules, spectroscopy, kinetics, environment, & general theory >Mutual Sensitization of the oxidation of nitric oxide and a natural gas blend in a JSR at elevated pressure: Experimental and detailed kinetic modeling study
【24h】

Mutual Sensitization of the oxidation of nitric oxide and a natural gas blend in a JSR at elevated pressure: Experimental and detailed kinetic modeling study

机译:高压下JSR中一氧化氮和天然气混合物的氧化互感:实验和详细动力学模型研究

获取原文
获取原文并翻译 | 示例
           

摘要

The mutual sensitization of the oxidation of NO and a natural gas blend (methane-ethane 10: 1) was studied experimentally in a fused silica jet-stirred reactor operating at 10 atm, over the temperature range 800-1160 K, from fuel-lean to fuel-rich conditions. Sonic quartz probe sampling followed by on-line FTIR analyses and off-line GC-TCD/FID analyses were used to measure the concentration profiles of the reactants, the stable intermediates, and the final products. A detailed chemical kinetic modeling of the present experiments was performed yielding an overall good agreement between the present data and this modeling. According to the proposed kinetic scheme, the mutual sensitization of the oxidation of this natural gas blend and NO proceeds through the NO to NO2 conversion by HO2, CH3O2, and C2H5O2. The detailed kinetic modeling showed that the conversion of NO to NO2 by CH3O2 and C2H5O2 is more important at low temperatures (ca. 820 K) than at higher temperatures where the reaction of NO with HO2 controls the NO to NO2 conversion. The production of OH resulting from the oxidation of NO by HO2, and the production of alkoxy radicals via RO2 + NO reactions promotes the oxidation of the fuel. A simplified reaction scheme was delineated: NO + HO2 -> NO2 + OH followed by OH + CH4 -> CH3 + H2O and OH + C2H6 -> C2H5 + H2O. At low-temperature, the reaction also proceeds via CH3 + O-2 (+ M) -> CH3O2 (+ M); CH3O2 + NO -> CH3O + NO2 and C2H5 + O-2 -> C2H5O2; C2H5O2 + NO -> C2H5O + NO2. At higher temperature, methoxy radicals are produced via the following mechanism: CH3 + NO2 -> CH3O + NO. The further reactions CH3O -> CH2O + H; CH2O + OH -> HCO + H2O; HCO + O-2 -> HO2 + CO; and H + O-2 + M -> HO2 + M complete the sequence. The proposed model indicates that the well-recognized difference of reactivity between methane and a natural gas blend is significantly reduced by addition of NO. The kinetic analyses indicate that in the NO-seeded conditions, the main production of OH proceeds via the same route, NO + HO2 -> NO2 + OH. Therefore, a significant reduction of the impact of the fuel composition on the kinetics of oxidation occurs.
机译:在稀有燃料的情况下,在温度为800-1160 K的温度范围为10 atm的熔融石英射流搅拌反应器中,对NO和天然气混合物(甲烷-乙烷10:1)的氧化的相互敏化进行了实验研究。燃料丰富的条件。超声石英探针采样,然后进行在线FTIR分析和离线GC-TCD / FID分析,用于测量反应物,稳定的中间体和最终产物的浓度曲线。进行了本实验的详细化学动力学建模,从而在本数据与该建模之间获得了总体良好的一致性。根据提出的动力学方案,这种天然气混合物与NO的氧化互感通过HO2,CH3O2和C2H5O2从NO转化为NO2进行。详细的动力学模型表明,在低温(约820 K)下,CH3O2和C2H5O2将NO转化为NO2比在更高的温度下NO与HO2的反应控制NO向NO2的转化更为重要。由HO2氧化NO产生的OH的生成,以及通过RO2 + NO反应生成的烷氧基的生成促进了燃料的氧化。描述了一种简化的反应方案:NO + HO2-> NO2 + OH,然后是OH + CH4-> CH3 + H2O和OH + C2H6-> C2H5 + H2O。在低温下,反应也通过CH3 + O-2(+ M)→CH3O2(+ M)进行。 CH3O2 + NO-> CH3O + NO2和C2H5 + O-2-> C2H5O2; C2H5O2 + NO-> C2H5O + NO2。在较高的温度下,甲氧基通过以下机理产生:CH 3 + NO 2-> CH 3 O + NO。进一步反应CH3O→CH2O + H; CH 2 O + OH-> HCO + H 2 O; HCO + O-2-> HO2 + CO; H + O-2 + M-> HO2 + M完成序列。提出的模型表明,通过添加NO可以显着降低人们公认的甲烷与天然气共混物之间的反应性差异。动力学分析表明,在NO播种条件下,OH的主要产生途径是通过相同的途径进行的,即NO + HO2-> NO2 + OH。因此,燃料组合物对氧化动力学的影响显着降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号