首页> 外文期刊>Combustion and Flame >Effects of molecular structure on oxidation reactivity of cyclic hydrocarbons: Experimental observations and conformational analysis
【24h】

Effects of molecular structure on oxidation reactivity of cyclic hydrocarbons: Experimental observations and conformational analysis

机译:分子结构对环烃氧化反应性的影响:实验观察和构象分析

获取原文
获取原文并翻译 | 示例
       

摘要

This work concerns the pre-ignition reactivity of cyclic hydrocarbons and its dependence on cyclic structures. In the first part, global reactivity of five cyclic hydrocarbons, methylcyclopentane (MCP), cyclohexane (CH), methylcyclohexane (MCH), decahydronaphthalene (decalin), and 1,2,3,4-tetrahydronaphthalene (tetralin), whose detailed product analyses were recently reported @@[Y. Yang, A.L Boehman, Proc. Combust. Inst. 32(1) (2009) 419-426; Y. Yang, A.L Boehman, Combust. Flame 157(3) (2010) 495-505], were compared over a range of compression ratio and intake temperature in a motored engine. Molecular structure exerts a profound effect on low temperature oxidation reactivity. Decalin is the most reactive compound whose extent of oxidation increases monotonically with increasing temperature and pressure. MCH shows higher low temperature reactivity than CH, and both show distinct negative temperature coefficient behavior. MCP and tetralin exhibit little low temperature reaction before critical conditions are reached for autoignition. In the second part, conformational analysis is conducted to understand how molecular structures affect the low temperature oxidative reactivity, in particular the (1,5) H-shift of fuel peroxy radicals (ROO→~(1,5)QOOH), the key step in low temperature chain branching. In comparison with open-chain structures, cyclic structures significantly reduce the total number of hydrogens that can be abstracted in the (1,5) H-shift. This is because the (1,5) H-shift of a cyclohexylperoxy radical requires both the peroxy group and the to-be-abstracted hydrogen locate at an axial position on the cyclohexane ring. The total number of available hydrogens in decalin, MCH, CH, and tetralin is 14,11,6, and 4, respectively. Also important is the number of hydrogens available for the (1,5) isomerization of a given peroxy group, i.e., the degeneracy of the (1,5) H-shift. Degeneracy in (1,5) H-shift for decalin, MCH, CH, and tetralin is ~3,2-3,2, and 1, respectively. These numbers are in accord with the relative reactivity observed for these compounds. The higher reactivity of MCH relative to CH also results from the equatorial preference of the methyl group which forces the peroxy group to stay at an axial position and facilitates (1,5) H-shift. The last argument is confirmed by quantum mechanical calculations.
机译:这项工作涉及环状烃的点火前反应性及其对环状结构的依赖性。在第一部分中,详细分析了五种环状烃的整体反应性,它们分别是甲基环戊烷(MCP),环己烷(CH),甲基环己烷(MCH),十氢化萘(decalin)和1,2,3,4-四氢萘(tetralin)。最近被报道@@ [是。 Yang,A.L Boehman,Proc。燃烧研究所32(1)(2009)419-426;杨Y.A.L Boehman,燃烧。在发动机的压缩比和进气温度范围内比较了Flame 157(3)(2010)495-505]。分子结构对低温氧化反应性具有深远的影响。十氢化萘是最具反应性的化合物,其氧化程度随温度和压力的增加而单调增加。 MCH显示出比CH高的低温反应性,并且都显示出明显的负温度系数行为。在达到自燃的临界条件之前,MCP和四氢化萘几乎没有低温反应。在第二部分中,进行构象分析以了解分子结构如何影响低温氧化反应性,尤其是燃料过氧自由基的(1,5)H位移(ROO→〜(1,5)QOOH),这是关键进行低温链支化。与开链结构相比,环状结构显着减少了可通过(1,5)H位移提取的氢的总数。这是因为环己基过氧自由基的(1,5)H-位移需要过氧基团和要被吸收的氢都位于环己烷环的轴向位置。十氢化萘,MCH,CH和四氢萘中可用氢的总数分别为14,11,6和4。同样重要的是可用于给定过氧基团的(1,5)异构化的氢数,即(1,5)H位移的简并性。十氢化萘,MCH,CH和四氢萘的(1,5)H移的简并分别为〜3,2-3,2和1。这些数字与对于这些化合物观察到的相对反应性一致。 MCH相对于CH的更高的反应性还源于甲基的赤道偏爱,它迫使过氧基团停留在轴向位置并促进(1,5)H移位。最后一个论点由量子力学计算证实。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号