首页> 外文期刊>Combustion and Flame >Understanding ignition processes in spray-guided gasoline engines using high-speed imaging and the extended spark-ignition model SparkCIMM. Part A: Spark channel processes and the turbulent flame front propagation
【24h】

Understanding ignition processes in spray-guided gasoline engines using high-speed imaging and the extended spark-ignition model SparkCIMM. Part A: Spark channel processes and the turbulent flame front propagation

机译:使用高速成像和扩展的火花点火模型SparkCIMM了解喷雾引导汽油发动机的点火过程。 A部分:火花通道过程和湍流火焰前沿传播

获取原文
获取原文并翻译 | 示例
       

摘要

Recent high-speed imaging of ignition processes in spray-guided gasoline engines has motivated the development of the physically-based spark channel ignition monitoring model SparkCIMM, which bridges the gap between a detailed spray/vaporization model and a model for fully developed turbulent flame front propagation. Previously, both SparkCIMM and high-speed optical imaging data have shown that, in spray-guided engines, the spark plasma channel is stretched and wrinkled by the local turbulence, excessive stretching results in spark re-strikes, large variations occur in turbulence intensity and local equivalence ratio along the spark channel, and ignition occurs in localized regions along the spark channel (based upon a Karlovitz-number criteria). In this paper, SparkCIMM is enhanced by: (1) an extended flamelet model to predict localized ignition spots along the spark plasma channel, (2) a detailed chemical mechanism for gasoline surrogate oxidation, and (3) a formulation of early flame kernel propagation based on the G-equation theory that includes detailed chemistry and a local enthalpy flamelet model to consider turbulent enthalpy fluctuations. In agreement with new experimental data from broadband spark and hot soot luminosity imaging, the model establishes that ignition prefers to occur in fuel-rich regions along the spark channel. In this highly-turbulent highly-stratified environment, these ignition spots burn as quasi-laminar flame kernels. In this paper, the laminar burning velocities and flame thicknesses of these kernels are calculated along the mean turbulent flame front, using tabulated detailed chemistry flamelets over a wide range of stoi-chiometry and exhaust gas dilution. The criteria for flame propagation include chemical (cross-over temperature based) and turbulence (Karlovitz-number based) effects. Numerical simulations using ignition models of different physical complexity demonstrate the significance of turbulent mixture fraction and enthalpy fluctuations in the prediction of early flame front propagation. A third paper on SparkCIMM (companion paper to this one) focuses on the importance of molecular fuel properties and flame curvature on early flame propagation and compares computed flame propagation with high speed combustion imaging and computed heat release rates with cylinder pressure analysis. The goals of SparkCIMM development are to (a) enhance our fundamental understanding of ignition and combustion processes in highly-turbulent highly-stratified engine conditions, (b) incorporate that understanding into a physically-based submodel for RANS engine calculations that can be reliably used without modification for a wide range of conditions (i.e., homogeneous or stratified, low or high turbulence, low or high dilution), and (c) provide a submodel that can be incorporated into a future LES model for physically-based modeling of cycle-to-cycle variability in engines.
机译:喷雾制导汽油发动机点火过程的最新高速成像已推动了基于物理的火花通道点火监控模型SparkCIMM的开发,该模型弥合了详细的喷雾/汽化模型与完全开发的湍流火焰前沿模型之间的差距传播。以前,SparkCIMM和高速光学成像数据均显示,在喷雾制导发动机中,火花等离子通道由于局部湍流而被拉伸和起皱,过度拉伸会导致火花再次撞击,湍流强度和沿火花通道的局部当量比,并且在沿火花通道的局部区域中发生点火(基于卡洛维兹数标准)。在本文中,通过以下方式增强了SparkCIMM:(1)扩展的小火焰模型,用于预测沿火花等离子体通道的局部点火点;(2)汽油替代物氧化的详细化学机理;(3)早期火焰核扩散的公式基于G方程理论,该理论包括详细的化学反应和考虑焓变波动的局部焓小火焰模型。与来自宽带火花和热烟灰光度成像的新实验数据相一致,该模型确定,点火倾向于发生在沿火花通道的燃料丰富区域。在这种高度动荡,高度分层的环境中,这些着火点以准层状火焰核燃烧。在本文中,使用表格化的详细化学小火焰在广泛的化学计量比和废气稀释范围内,沿着平均湍流火焰锋计算了这些籽粒的层流燃烧速度和火焰厚度。火焰传播的标准包括化学效应(基于交叉温度)和湍流效应(基于Karlovitz数)。使用具有不同物理复杂性的点火模型进行的数值模拟证明了湍流混合物分数和焓波动在预测早期火焰前沿传播中的重要性。关于SparkCIMM的第三篇论文(与之对应的论文)关注分子燃料特性和火焰曲率对早期火焰传播的重要性,并比较了高速燃烧成像计算出的火焰传播和汽缸压力分析计算出的热释放率。 SparkCIMM开发的目标是(a)增强我们对高度湍流,高度分层的发动机工况下的点火和燃烧过程的基本理解,(b)将该理解纳入基于物理的子模型中,以可靠地使用RANS发动机计算无需针对各种条件(即均质或分层,低或高湍流,低或高稀释​​度)进行修改,并且(c)提供了可以纳入未来的LES模型中的子模型,用于基于物理的循环建模发动机的循环变化。

著录项

  • 来源
    《Combustion and Flame》 |2011年第11期|p.2229-2244|共16页
  • 作者单位

    Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551, USA;

    Propulsion Systems Research Laboratory, General Motors Global Research & Development, Warren, MI, USA;

    Propulsion Systems Research Laboratory, General Motors Global Research & Development, Warren, MI, USA;

    Propulsion Systems Research Laboratory, General Motors Global Research & Development, Warren, MI, USA;

    Institute for Combustion Technology, RWTH Aachen University, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    engine; direct-injection; imaging; ignition; stratified;

    机译:发动机;直接注射成像点火;分层;
  • 入库时间 2022-08-18 00:12:19

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号