首页> 外文期刊>Combustion and Flame >Physicochemical effects of varying fuel composition on knock characteristics of natural gas mixtures
【24h】

Physicochemical effects of varying fuel composition on knock characteristics of natural gas mixtures

机译:不同燃料成分对天然气混合物爆震特性的物理化学影响

获取原文
获取原文并翻译 | 示例
       

摘要

The physicochemical origins of how changes in fuel composition affect autoignition of the end gas, leading to engine knock, are analyzed for a natural gas engine. Experiments in a lean-burn, high-speed med-ium-BMEP gas engine are performed using a reference natural gas with systematically varied fractions of admixed ethane, propane and hydrogen. Thermodynamic analysis of the measured non-knocking pressure histories shows that, in addition to the expected changes arising from changes in the heat capacity of the mixture, changes in the combustion duration relative to the compression cycle (the combustion "phasing") caused by variations in burning velocity dominate the effects of fuel composition on the temperature (and pressure) of the end gas. Thus, despite the increase in the heat capacity of the fuel-air mixture with addition of ethane and propane, the change in combustion phasing is actually seen to increase the maximum end-gas temperature slightly for these fuel components. By the same token, the substantial change in combustion duration upon hydrogen addition strongly increases the end-gas temperature, beyond that caused by the decrease in mixture heat capacity. The impact of these variations in in-cy Under conditions on the knock tendency of the fuel have been assessed using autoignition delay times computed using SENKIN and a detailed chemical mechanism for the end gas under the conditions extant in the engine. The results show that the ignition-promoting effect of hydrogen is mainly the result of the increase in end-gas temperature and pressure, while addition of ethane and propane promotes ignition primarily by changing the chemical autoignition behavior of the fuel itself. Comparison of the computed end-gas autoignition delay time, based on the complete measured pressure history of each gas, with the measured Knock-Limited Spark Timing shows that the computed delay time accurately reflects the measured knock tendency of the fuels.
机译:对于天然气发动机,分析了燃料成分变化如何影响最终气体自燃,导致发动机爆震的物理化学原因。在稀燃,高速中型BMEP燃气发动机中的实验是使用参考天然气以及乙烷,丙烷和氢气的混合比例随系统变化的。对测得的非爆震压力历史的热力学分析表明,除了混合物热容量变化引起的预期变化外,燃烧持续时间相对于压缩循环的变化(燃烧“定相”)也由变化引起燃烧速度的变化决定了燃料成分对最终气体温度(和压力)的影响。因此,尽管在添加乙烷和丙烷的情况下燃料-空气混合物的热容量有所增加,但实际上可以看出,燃烧定相的变化会稍微提高这些燃料成分的最大最终气体温度。同样,添加氢气后燃烧持续时间的显着变化大大增加了最终气体温度,超过了混合物热容量下降所导致的温度。在循环条件下,这些变化对燃油爆震趋势的影响已通过使用SENKIN计算的自燃延迟时间和在发动机现有条件下对最终气体的详细化学机理进行了评估。结果表明,氢气的点火促进作用主要是端气温度和压力升高的结果,而乙烷和丙烷的加入则主要通过改变燃料本身的化学自燃行为来促进点火。基于每种气体的完整测量压力历史记录,计算出的最终气体自燃延迟时间与测量出的爆震限制点火正时的比较表明,计算出的延迟时间可以准确反映出燃料的爆震趋势。

著录项

  • 来源
    《Combustion and Flame》 |2014年第10期|2729-2737|共9页
  • 作者单位

    DNV-GL Oil & Gas, P.O. Box 2029, 9704 CA Groningen. The Netherlands;

    DNV-GL Oil & Gas, P.O. Box 2029, 9704 CA Groningen. The Netherlands;

    DNV-GL Oil & Gas, P.O. Box 2029, 9704 CA Groningen. The Netherlands;

    DNV-GL Oil & Gas, P.O. Box 2029, 9704 CA Groningen. The Netherlands,Energy and Sustainability Research Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Engine knock; Autoignition delay times; Natural gas; Hydrogen;

    机译:发动机爆震;自燃延迟时间;天然气;氢;
  • 入库时间 2022-08-18 00:11:36

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号