首页> 外文期刊>Combustion and Flame >Experimental and modeling study of styrene oxidation in spherical reactor and shock tube
【24h】

Experimental and modeling study of styrene oxidation in spherical reactor and shock tube

机译:球形反应器和激波管中苯乙烯氧化的实验与模型研究

获取原文
获取原文并翻译 | 示例
       

摘要

The oxidation of styrene, one of the main stable intermediates from the oxidation of large alkylated aromatic hydrocarbons, has been investigated in the present work both experimentally and numerically. Experiments were performed using two complementary techniques, spherical bomb for laminar flame speed studies and shock tube for ignition delay time measurements. In particular, the laminar flame speeds of styrene/air mixtures were measured at three different initial temperatures (342 K, 373 K, and 405 K), over a wide range of equivalence ratios (0.75-1.45), for an initial pressure of 100 kPa. In addition, the autoignition of styrene/O-2 mixtures in argon bath gas (phi = 0.5, 1.0, and 1.5) was investigated over a wide range of temperatures (1390-1990 K), at highly diluted conditions (94.3%-99% argon), and for pressures between 110 and 200 kPa. A detailed chemical kinetic model, based on the toluene chemistry by Metcalfe et at (2011), was developed and validated against the newly obtained experimental results and the flow reactor data available in the literature (Litzinger et al, 1986). Sensitivity and rate of production analyses were performed and showed that, at the conditions studied herein for the flame speed investigation, the main fuel consumption pathways include the reaction of the fuel with H atoms to form phenyl radical and ethylene or benzene and vinyl radical, with O to form benzyl radical + HCO, and the H-abstraction reactions on both the vinyl moiety and the ring. On the other hand, the analyses performed at the high temperature, highly-diluted conditions encountered in the shock tube study highlighted the importance of the fuel thermal decomposition steps for the simulation of the ignition delay time measurements. The model was also tested against the low-pressure flame and jet stirred reactor data by Yuan et at (2015). The results highlight the need for future modifications in the benzene chemistry by Metcalfe et aL and inclusion of pressure dependent rate parameters in order to improve the prediction capabilities of the model. (C) 2016 The Combustion Institute. Published by Elsevier Inc All rights reserved.
机译:苯乙烯的氧化是从大型烷基化芳烃氧化得到的主要稳定中间体之一,目前已通过实验和数值研究。实验使用两种互补技术进行,球形弹用于层流火焰速度研究,冲击管用于点火延迟时间测量。尤其是,在初始压力​​为100的大当量比(0.75-1.45)范围内,在三种不同的初始温度(342 K,373 K和405 K)下测量了苯乙烯/空气混合物的层流火焰速度。千帕此外,还研究了在高度稀释的条件下(94.3%-99)在宽温度范围(1390-1990 K)下研究氩浴气体(phi = 0.5、1.0和1.5)中苯乙烯/ O-2混合物的自燃现象。 %氩气)和110至200 kPa之间的压力。基于Metcalfe等人(2011年)的甲苯化学方法,开发了详细的化学动力学模型,并针对新获得的实验结果和文献中可用的流动反应器数据进行了验证(Litzinger等人,1986年)。进行了敏感性和生产率分析,结果表明,在本文研究的火焰速度研究条件下,主要的燃料消耗途径包括燃料与H原子反应形成苯基和乙烯或苯和乙烯基的反应, O形成苄基+ HCO,并且在乙烯基部分和环上均发生H-抽象反应。另一方面,在冲击管研究中遇到的高温,高稀释条件下进行的分析突出了燃料热分解步骤对于模拟点火延迟时间测量的重要性。 Yuan等人(2015)还针对低压火焰和射流搅拌反应器数据对模型进行了测试。结果强调了Metcalfe等人对苯化学的未来修改的需要,并包括压力依赖性速率参数,以提高模型的预测能力。 (C)2016年燃烧研究所。由Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号