首页> 外文期刊>Combustion and Flame >Fabrication of a helical detonation channel: Effect of initial pressure on the detonation propagation modes of ethylene/oxygen mixtures
【24h】

Fabrication of a helical detonation channel: Effect of initial pressure on the detonation propagation modes of ethylene/oxygen mixtures

机译:螺旋爆轰通道的制造:初始压力对乙烯/氧气混合物爆轰传播模式的影响

获取原文
获取原文并翻译 | 示例
       

摘要

The effect of the initial gas mixture pressure on curved detonation propagation modes has been extensively investigated in the present study using a stoichiometric ethylene-oxygen mixture in a new experimental facility consisting of a straight channel section joined to a helical channel section. Flame propagation through the helical channel was observed by high-speed CCD camera, and the trajectories of triple points on the detonation waves were obtained using a soot-deposition plate. The results clearly identify three detonation propagation modes, namely, a stabilized propagation mode, critical mode, and non-stabilized propagation mode, that vary according to the ratio of the radius of curvature of the inside wall r(i) to the normal detonation cell width A. For the stabilized propagation mode (r(i)/lambda 27), the detonation velocity at the inner wall in the curved section asymptotically approaches the detonation velocity in the straight section with increasing initial pressure due to competition between the weakening and strengthening effects characteristic of the curved channel geometry. A definite flame shape, which is perpendicular to the inner wall of the channel, is observed. For the critical mode (16 = r(i)/lambda = 27), the shape of the flame front is observed to be more irregular and unstable than that of the stabilized propagation mode. This mode can be considered as a transition zone, where the stabilized propagation mode transits to the non-stabilized propagation mode with decreasing initial pressure. For the non-stabilized propagation mode (r(i)/lambda 16), two types of periodic detonation propagation behavior are observed. The first is analogous to single-headed spinning detonation in a circular tube, which is observed in an initial pressure range of 5.5-11 kPa. Soot-coated foil records show that the cellular structure has specific features of the periodic variation, such as re-generation, decrease, and partial disappearance of detonation near the inner wall. The angular interval of consecutive cycles for sinning-like detonation decreases with increasing initial pressure. The second is galloping detonation near the detonation propagation limit. In one cycle of galloping detonation, a change from multi-headed to single-headed cellular structure is observed. However, as the galloping detonation further decays to the low velocity phase of the galloping cycle, the cellular structure vanishes. The angular interval of consecutive cycles for galloping detonation is observed to be random. Although both spinning-like and galloping detonations periodically undergo the process of re-generation, decrease, and failure, they exhibit two different propagation behaviors. The former partially fails near the inner wall, and is re-initiated by transverse detonation from the outer wall, while the latter fails completely, and re-generates by local explosion at the outer wall. (C) 2018 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:在本研究中,已使用新的实验装置(包括将直通道段连接到螺旋通道段上)使用化学计量的乙烯-氧气混合物,广泛研究了初始气体混合物压力对弯曲爆轰传播模式的影响。用高速CCD照相机观察火焰在螺旋形通道中的传播,并使用烟灰沉积板获得爆轰波上三点的轨迹。结果清楚地确定了三种爆震传播模式,即稳定传播模式,临界模式和非稳定传播模式,它们根据内壁r(i)与正常爆炸单元的曲率半径之比而变化对于稳定的传播模式(r(i)/ lambda> 27),由于削弱和弯曲之间的竞争,弯曲截面内壁处的爆震速度随着初始压力的增加而渐近逼近直截面的爆炸速度。弯曲通道几何形状的强化效果。观察到垂直于通道内壁的明确火焰形状。对于临界模式(16 <= r(i)/λ<= 27),观察到火焰前沿的形状比稳定传播模式更不规则且不稳定。该模式可以被认为是过渡区,在该过渡区中,稳定的传播模式随着初始压力的降低而转变为不稳定的传播模式。对于非稳定传播模式(r(i)/λ<16),观察到两种类型的周期性爆震传播行为。第一种类似于在圆管中的单头旋转爆轰,在5.5-11 kPa的初始压力范围内可以观察到。涂有碳烟的箔片记录表明,孔结构具有周期性变化的特定特征,例如内壁附近的爆炸的再生,减少和部分消失。犯罪性爆炸的连续循环的角间隔随初始压力的增加而减小。第二是在爆炸传播极限附近疾驰的爆炸。在一个疾驰的爆炸周期中,观察到了从多头细胞向单头细胞结构的变化。但是,随着舞动的爆炸进一步衰减到舞动周期的低速阶段,细胞结构消失了。观察到连续的爆震连续循环的角度间隔是随机的。尽管自旋和爆炸的爆炸都周期性地经历再生,减少和破坏的过程,但它们表现出两种不同的传播行为。前者在内壁附近部分失效,并通过从外壁的横向爆炸而重新引发,而后者则完全失效,并通过外壁的局部爆炸而重新产生。 (C)2018年燃烧研究所。由Elsevier Inc.出版。保留所有权利。

著录项

  • 来源
    《Combustion and Flame》 |2018年第6期|1-9|共9页
  • 作者单位

    Jiangsu Univ, Sch Energy & Power Engn, Zhenjiang 212013, Peoples R China;

    Jiangsu Univ, Sch Energy & Power Engn, Zhenjiang 212013, Peoples R China;

    Jiangsu Univ, Sch Energy & Power Engn, Zhenjiang 212013, Peoples R China;

    Jiangsu Univ, Sch Energy & Power Engn, Zhenjiang 212013, Peoples R China;

    Jiangsu Univ, Sch Energy & Power Engn, Zhenjiang 212013, Peoples R China;

    Nanjing Univ Sci & Technol, State Key Lab Sci & Technol Ballist, Nanjing 210094, Jiangsu, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Helical channel; Curved detonation; Experimental measurements; Detonation propagation mode; Periodic variation;

    机译:螺旋通道;弯曲爆轰;实验测量;爆轰传播模式;周期性变化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号