...
首页> 外文期刊>Combustion and Flame >DNS study of the global heat release rate during early flame kernel development under engine conditions
【24h】

DNS study of the global heat release rate during early flame kernel development under engine conditions

机译:发动机条件下早期火焰内核开发期间全球热释放率的DNS研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Despite the high technical relevance of early flame kernel development for the reduction of cycle-to-cycle variations in spark ignition engines, there is still a need for a better fundamental understanding of the governing in-cylinder phenomena in order to enable resilient early flame growth. To isolate the effects of small- and large-scale turbulent flow motion on the young flame kernel, a three-dimensional DNS database has been designed to be representative for engine part load conditions. The analysis is focussed on flame displacement speed and flame area in order to investigate effects of flame structure and flame geometry on the global burning rate evolution. It is shown that despite a Karlovitz number of up to 13, which is at the upper range of conventional engine operation, thickening of the averaged flame structure by small-scale turbulent mixing is not observed. After ignition effects have decayed, the flame normal displacement speed recovers the behavior of a laminar unstretched premixed flame under the considered unity-Lewis-number conditions. Run-to-run variations in the global heat release rate are shown to be primarily caused by flame kernel area dynamics. The analysis of the flame area balance equation shows that turbulence causes stochastic flame kernel area growth by affecting the curvature evolution, rather than by inducing variations in total flame area production by strain. Further, it is shown that in local segments of a fully-developed planar flame with similar surface area as the investigated flame kernels, temporal variations in flame area rate-of-change occur. Contrasting to early flame kernels, these effects can be exclusively attributed to curvature variations in negatively curved flame regions. (C) 2019 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:尽管早期火焰核心开发的技术相关性,但对火花点火发动机的循环变化的减少,仍然需要对控制气缸现象的更好的基本理解,以便能够实现弹性早期火焰生长。为了隔离小型和大规​​模湍流运动对年轻火焰内核的影响,三维DNS数据库被设计为代表发动机部件负载条件。分析集中在火焰位移速度和火焰区域上,以研究火焰结构和火焰几何形状对全球燃烧速率演化的影响。结果表明,尽管在常规发动机操作的高达13的karlovitz数量上,但是不观察到通过小规模湍流混合的平均火焰结构的增厚。点火效果腐烂后,火焰正常位移速度恢复了在所考虑的Unity-Lewis lewis条件下的层状未拉伸预混火焰的行为。全局热释放率的运行变化显示为主要由火焰内核区域动态引起。火焰区平衡方程的分析表明,湍流使随机火焰核心面积通过影响曲率蒸煮,而不是通过菌株产生总火焰区域产生的变化。此外,示出了在具有类似表面积的完全开发的平面火焰的局部区段中作为所研究的火焰核,发生火焰区域变化的时间变化。与早期火焰核形成对比,这些效果可以完全归因于带负曲面的曲率变化。 (c)2019燃烧研究所。由elsevier Inc.出版的所有权利保留。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号