首页> 外文期刊>Combustion and Flame >Experimental, numerical and theoretical analyses of the ignition of thermally thick PMMA by periodic irradiation
【24h】

Experimental, numerical and theoretical analyses of the ignition of thermally thick PMMA by periodic irradiation

机译:定期辐照点燃厚热PMMA的实验,数值和理论分析

获取原文
获取原文并翻译 | 示例
           

摘要

In this work, the pyrolysis and ignition of thermally thick poly (methylmethacrylate) material with low periodic on-off irradiation was investigated, the solid and gas absorption was ignored, an ignition time formula with periodic heating was established based on the deduced ignition time model. The results show that the surface and in-depth sample temperatures as well as the mass flux all increase during the periodic 'on' cycle prior to ignition, at the moment there is a small luminous sustained flame, followed by flame spreading. For the surface temperature, the fluctuation magnitude increases with increasing cycle time proportional to root tau. The in-depth temperature decay relating to the distance and cycle as proportional to exp(-x/root tau). The surface and in-depth temperatures, mass flux oscillates due to the periodic on-off irradiation with a time delay, which increases with increasing cycle and in-depth distance as proportional to root tau x. The cycle has slight influence upon the surface temperature and mass flux at the moment of ignition, where the ignition temperature maintains at about 340 degrees C, while the critical mass flux is in a range of 1-1.4 g/m(2)s, which are both independent of the external heat flux. The linear relationship of successive peak surface temperature with heat flux via time (T-5*-T-0/q ''(e))(2) proportional to t in the periodic on-off heating is retained. The theoretical predictions of the periodic ignition times derived in this study are in good agreement with the experimental measurements. Finally, compared with constant heat flux, the periodic heating delays the ignition, but with increasing cycle time, the ignition time is seen to decrease, which is primarily attributed to increases in the time-averaged irradiative heat flux. The classical model over-predicts the ignition time, the prediction error is expected to increase for long time ignition with low thermal inertia, big perturbation heat flux and long cycle time. (C) 2018 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:在这项工作中,研究了具有低周期性开-关辐射的热厚聚甲基丙烯酸甲酯材料的热解和点火,忽略了固体和气体的吸收,并根据推导的点火时间模型建立了具有周期性加热的点火时间公式。结果表明,表面和深度样品温度以及质量通量均在点火前的周期性“接通”循环期间增加,此刻存在少量发光的持续火焰,随后火焰蔓延。对于表面温度,波动幅度随与根τ成正比的循环时间的增加而增加。与距离和循环有关的深度温度衰减与exp(-x / root tau)成比例。表面和深度温度的质量通量由于周期性的开-关照射而发生振荡,并具有一定的时间延迟,并且随着循环次数的增加和深度的增加而与根taux成正比。该循环对点火时刻的表面温度和质量通量有轻微影响,点火温度保持在约340摄氏度,而临界质量通量在1-1.4 g / m(2)s的范围内,它们都与外部热通量无关。在周期性开关加热中,连续峰值表面温度与热通量之间的线性关系保持不变(t-5 * -T-0 / q”(e))(2),与t成正比。在这项研究中得出的周期性点火时间的理论预测与实验测量结果非常吻合。最后,与恒定的热通量相​​比,周期性加热会延迟点火,但随着循环时间的增加,点火时间会减少,这主要归因于时间平均辐射热通量的增加。经典模型过度预测了点火时间,对于低热惯性,较大的扰动热通量和较长的循环时间的长时间点火,预计预测误差会增加。 (C)2018年燃烧研究所。由Elsevier Inc.出版。保留所有权利。

著录项

  • 来源
    《Combustion and Flame》 |2018年第11期|41-48|共8页
  • 作者单位

    Univ Sci & Technol China, State Key Lab Fire Sci, Hefei 230026, Anhui, Peoples R China;

    Univ Sci & Technol China, State Key Lab Fire Sci, Hefei 230026, Anhui, Peoples R China;

    Univ Sci & Technol China, State Key Lab Fire Sci, Hefei 230026, Anhui, Peoples R China;

    Univ Sci & Technol China, State Key Lab Fire Sci, Hefei 230026, Anhui, Peoples R China;

    Univ Sci & Technol China, State Key Lab Fire Sci, Hefei 230026, Anhui, Peoples R China;

    Univ Sci & Technol China, State Key Lab Fire Sci, Hefei 230026, Anhui, Peoples R China;

    Univ Sci & Technol China, State Key Lab Fire Sci, Hefei 230026, Anhui, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Periodic irradiation; Ignition time; Ignition temperature; Mass flux; Thermally thick material;

    机译:周期性照射;点火时间;点火温度;质量通量;热厚材料;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号