首页> 外文期刊>Combinatorica >A Lower Bound On The Integrality Gap For Minimum Multicut In Directed Networks
【24h】

A Lower Bound On The Integrality Gap For Minimum Multicut In Directed Networks

机译:定向网络中最小多重切割的完整性差距的下界

获取原文
获取原文并翻译 | 示例

摘要

Given a directed edge-weighted graph and k source-sink pairs, the Minimum Directed Multicut Problem is to find an edge subset with minimal weight, that separates each source-sink pair. Determining the minimum multicut in directed or undirected graphs is NP-hard. The fractional version of the minimum multicut problem is dual to the maximum multicommodity flow problem. The integrality gap for an instance of this problem is the ratio of the minimum weight multicut to the minimum weight fractional multicut; trivially this gap is always at least 1 and it is easy to show that it is at most k. In the analogous problem for undirected graphs this upper bound was improved to O(log k).
机译:给定一个有向边加权图和k个源-汇对,最小有向多割问题是找到权重最小的边子集,该子集将每个源-汇对分开。确定有向图或无向图的最小多重切割是NP难的。最小多重切割问题的分数形式是最大多重商品流动问题的对偶形式。对于此问题的一个实例,完整性差距是最小权重多重切割与最小权重分数多重切割的比率;通常,该间隙始终至少为1,并且很容易证明它最多为k。在无向图的类似问题中,该上限提高到O(log k)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号