...
首页> 外文期刊>Coastal engineering >An ISPH with k-ε closure for simulating turbulence under solitary waves
【24h】

An ISPH with k-ε closure for simulating turbulence under solitary waves

机译:具有k-ε闭合的ISPH,用于模拟孤波下的湍流

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper an Incompressible Smoothed Particle Hydrodynamics (ISPH) method solving the 2D RANS (Reynolds Averaged Navier-Stokes) equations with the k-epsilon turbulence closure is constructed. In the present model, the concept of "massless ISPH" utilizing the definition of "particle density" (number of computational particles within unit volume) is stressed. The skills of this numerical model are tested by applying to two laboratory experiments: (1) A non-breaking solitary wave propagating over a bottom-mounted barrier and (2) a solitary wave breaking on a 1 on 50 slope. In the former case flow separation occurs behind the barrier as the wave crest passes by and a vortex is generated, which later interacts with free surface causing breaking. In the latter case wave breaking and bottom friction both generate significant turbulence. For both cases, the effects of initial seeding of turbulent kinetic energy, required in the k-epsilon model, are studied and it is concluded that initial values of O (10(-18)) to O (10(-8)) m(2)/s(2) should be used. An adaptive wall boundary condition for k-epsilon turbulence model is employed to avoid the unrealistic production of turbulence near the wall boundary. The numerical results, in terms of free surface profile, mean velocity field, vorticity field, turbulent kinetic energy and turbulent shear stress, are compared with experimental data. Very reasonable agreement is observed. This paper presents the first comprehensively validated 2D ISPH model with the k-epsilon turbulence closure, which can be applied to transient free surface wave problems.
机译:在本文中,构造了一种不可压缩的光滑粒子流体动力学(ISPH)方法,该方法求解具有k-ε湍流闭合的二维RANS(雷诺平均Navier-Stokes)方程。在本模型中,强调了利用“粒子密度”(单位体积内计算粒子的数量)定义的“无质量ISPH”的概念。通过应用到两个实验室实验来测试此数值模型的技能:(1)在底部安装的屏障上传播的非破坏性孤立波,以及(2)在50坡度为1的情况下破碎的孤立波。在前一种情况下,当波峰经过时会在障碍物后面发生流动分离,并产生涡流,然后涡旋与自由表面相互作用,导致破裂。在后一种情况下,波浪破碎和底部摩擦都会产生明显的湍流。对于这两种情况,研究了k-ε模型中要求的初始动荡动能注入的影响,并得出结论,O(10(-18))至O(10(-8))m的初始值应该使用(2)/ s(2)。为了避免在壁边界附近产生不切实际的湍流,采用了k-ε湍流模型的自适应壁边界条件。将自由表面轮廓,平均速度场,涡度场,湍动能和湍流剪切应力方面的数值结果与实验数据进行了比较。观察到非常合理的协议。本文提出了第一个经过全面验证的带有k-ε湍流闭合的二维ISPH模型,该模型可用于瞬态自由表面波问题。

著录项

  • 来源
    《Coastal engineering》 |2020年第4期|103657.1-103657.28|共28页
  • 作者

  • 作者单位

    Dalian Maritime Univ Coll Environm Sci & Engn Dalian Peoples R China|Natl Univ Singapore Dept Civil & Environm Engn Singapore Singapore;

    Natl Univ Singapore Dept Civil & Environm Engn Singapore Singapore|Cornell Univ Sch Civil & Environm Engn Ithaca NY 14853 USA|Natl Cent Univ Inst Hydrol & Ocean Sci Taoyuan Taiwan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    2D ISPH; k-epsilon model; Solitary wave breaking; Turbulent kinetic energy; Initial seeding; Adaptive boundary condition;

    机译:2D ISPH;k-ε模型孤立波湍动能初始播种;自适应边界条件;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号