...
首页> 外文期刊>Coastal engineering >Performance of a buoyancy-modified k-ω and k-ω SST turbulence model for simulating wave breaking under regular waves using OpenFOAM®
【24h】

Performance of a buoyancy-modified k-ω and k-ω SST turbulence model for simulating wave breaking under regular waves using OpenFOAM®

机译:使用OpenFOAM®修改浮力的k-ω和k-ωSST湍流模型的性能,用于模拟规则波浪下的波浪破碎

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In this work, the performance of a buoyancy-modified turbulence model is shown for simulating wave breaking in a numerical wave flume. Reynolds-Averaged Navier-Stokes (BANS) modelling is performed by applying both a k-omega and a k-omega SST turbulence model using the Computational Fluid Dynamics (CFD) toolbox OpenFOAM. In previous work of the authors (Devolder et al., 2017), the observed significant decrease in wave height over the length of the numerical wave flume based on RANS turbulence modelling for the case of propagating waves has been avoided by developing a buoyancy-modified k-omega SST model in which (i) the density is explicitly included in the turbulence transport equations and (ii) a buoyancy term is added to the turbulent kinetic energy (TKE) equation. In this paper, two buoyancy-modified turbulence models are applied for the case of wave breaking simulations: k-omega and k-omega SST. Numerical results of wave breaking under regular waves are validated with experimental data measured in a wave flume by Ting and Kirby (1994). The numerical results show a good agreement with the experimental measurements for the surface elevations, undertow profiles of the horizontal velocity and turbulent kinetic energy profiles. Moreover, the underlying motivations for the concept of a buoyancy-modified turbulence model are demonstrated by the numerical results and confirmed by the experimental observations. Firstly, the buoyancy term forces the solution of the flow field near the free water surface to a laminar solution in case of wave propagation. Secondly in the surf zone where waves break, the buoyancy term goes to zero and a fully turbulent solution of the flow field is calculated. Finally and most importantly, the buoyancy-modified turbulence models significantly reduce the common overestimation of TKE in the flow field.
机译:在这项工作中,浮力修正的湍流模型的性能被显示出来,用于模拟数值波槽中的波浪破裂。通过使用计算流体动力学(CFD)工具箱OpenFOAM应用k-omega和k-omega SST湍流模型来执行雷诺平均Navier-Stokes(BANS)建模。在作者先前的工作中(Devolder et al。,2017),通过开发浮力修正技术避免了基于传播波情况下基于RANS湍流模型的数值波槽长度上的波高显着下降。 k-omega SST模型,其中(i)密度明确包含在湍流输运方程中,并且(ii)浮力项添加到湍动能(TKE)方程中。在本文中,将两个浮力修正湍流模型应用于破波模拟的情况:k-omega和k-omega SST。 Ting and Kirby(1994)在波浪槽中测得的实验数据验证了规则波浪作用下波浪破碎的数值结果。数值结果表明与表面高度,水平速度的下牵引剖面和湍动能剖面的实验测量结果吻合良好。此外,数值结果证明了浮力修正湍流模型概念的潜在动机,并通过实验观察得到了证实。首先,在波浪传播的情况下,浮力项将自由水表面附近的流场的解强制为层流解。其次,在波浪破裂的冲浪区中,浮力项变为零,并计算了流场的完全湍流解。最后也是最重要的是,浮力修正湍流模型显着减少了流场中TKE的常见高估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号