首页> 外文期刊>Coastal engineering >Non-hydrostatic modeling of drag, inertia and porous effects in wave propagation over dense vegetation fields
【24h】

Non-hydrostatic modeling of drag, inertia and porous effects in wave propagation over dense vegetation fields

机译:稠密植​​被波传播中的阻力,惯性和多孔效应的非静水力学模型

获取原文
获取原文并翻译 | 示例
           

摘要

A new wave-vegetation model is implemented in an open-source code, SWASH (Simulating WAves till SHore). The governing equations are the nonlinear shallow water equations, including non-hydrostatic pressure. Besides the commonly considered drag force induced by vertical vegetation cylinders, drag force induced by horizontal vegetation cylinders in complex mangrove root systems, as well as porosity and inertia effects, are included in the vegetation model, providing a logical supplement to the existing models. The vegetation model is tested against lab measurements and existing models. Good model performance is found in simulating wave height distribution and maximum water level in vegetation fields. The relevance of including the additional effects is demonstrated by illustrative model runs. We show that the difference between vertical and horizontal vegetation cylinders in wave dissipation is larger when exposed to shorter waves, because in these wave conditions the vertical component of orbital velocity is more prominent. Both porosity and inertia effects are more pronounced with higher vegetation density. Porosity effects can cause wave reflection and lead to reduced wave height in and behind vegetation fields, while inertia force leads to negative energy dissipation that reduces the wave damping capacity of vegetation. Overall, the inclusion of both effects leads to greater wave reduction compared to common modeling practice that ignores these effects, but the maximum water level is increased due to porosity. With good model performance and extended functions, the new vegetation model in SWASH code is a solid advancement toward refined simulation of wave propagation over vegetation fields.
机译:在开源代码SWASH(模拟波直到SHore)中实现了一个新的波浪植被模型。控制方程是非线性浅水方程,包括非静水压力。除了通常认为的垂直植被圆柱体引起的阻力外,复杂的红树林根系中水平植被圆柱体引起的阻力以及孔隙度和惯性效应也包括在植被模型中,为现有模型提供了逻辑上的补充。根据实验室测量值和现有模型对植被模型进行了测试。在模拟植被场中的波高分布和最大水位时发现了良好的模型性能。说明性模型运行证明了包含其他影响的相关性。我们显示垂直和水平植被圆柱体在暴露于较短的波浪时在波浪消散方面的差异更大,因为在这些波浪条件下,轨道速度的垂直分量更加突出。较高的植被密度时,孔隙度和惯性效应都更加明显。孔隙效应会引起波反射并导致植被场内外的波高降低,而惯性力导致能量消散,从而降低植被的波阻尼能力。总体而言,与忽略这些影响的普通建模实践相比,包含这两种影响都导致更大的波减少,但由于孔隙率,最大水位会增加。凭借良好的模型性能和扩展功能,SWASH代码中的新植被模型是向精细模拟植被表面波传播的坚实进步。

著录项

  • 来源
    《Coastal engineering》 |2019年第7期|49-64|共16页
  • 作者单位

    Flanders Hydraul Res, Berchemlei 115, B-2140 Antwerp, Belgium|Delft Univ Technol, Fac Civil Engn & Geosci, Stevinweg 1, NL-2628 CN Delft, Netherlands;

    Sun Yat Sen Univ, Sch Marine Sci, Guangzhou 510275, Guangdong, Peoples R China|Southern Lab Ocean Sci & Engn, Zhuhai 519000, Guangdong, Peoples R China|Guangdong Prov Key Lab Marine Resources & Coastal, Guangzhou 510275, Guangdong, Peoples R China;

    Katholieke Univ Leuven, Fac Engn Sci, Leuven, Belgium;

    Delft Univ Technol, Fac Civil Engn & Geosci, Stevinweg 1, NL-2628 CN Delft, Netherlands;

    Delft Univ Technol, Fac Civil Engn & Geosci, Stevinweg 1, NL-2628 CN Delft, Netherlands;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Wave-vegetation interaction; Horizontal vegetation cylinders; Porosity effect; Inertia force; Dense vegetation; SWASH model;

    机译:波浪-植被相互作用;水平植被柱;孔隙效应;惯性力;茂密植被;SWASH模型;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号