首页> 外文期刊>Cloud Computing, IEEE Transactions on >Adaptive Workflow Scheduling on Cloud Computing Platforms with IterativeOrdinal Optimization
【24h】

Adaptive Workflow Scheduling on Cloud Computing Platforms with IterativeOrdinal Optimization

机译:具有迭代序数优化的云计算平台上的自适应工作流调度

获取原文
获取原文并翻译 | 示例

摘要

The scheduling of multitask jobs on clouds is an NP-hard problem. The problem becomes even worse when complex workflows are executed on elastic clouds, such as Amazon EC2 or IBM RC2. The main difficulty lies in the large search space and high overhead of generating optimal schedules, especially for real-time applications with dynamic workloads. In this work, a new (IOO) method is proposed. The method is applied in each iteration to achieve sub-optimal schedules. IOO aims at generating more efficient schedules from a global perspective over a long period. We prove through overhead analysis the advantages in time and space efficiency in using the IOO method. The IOO method is designed to adapt to system dynamism to yield suboptimal performance. In cloud experiments on IBM RC2 cloud, we execute 20,000 tasks in LIGO ( ) verification workflow on 128 virtual machines. The IOO schedule is generated in less than 1,000 seconds, while using the Monte Carlo simulation takes 27.6 hours, 100 times longer to yield an optimal schedule. The IOO-optimized schedule results in a throughput of 1,100 tasks/sec with 7 GB memory demand, compared with 60 percent decrease in throughput and 70 percent increase in memory demand in using the Monte Carlo method. Our LIGO experimental results clearly demonstrate the advantage of using the IOO-based workflow scheduling over the traditional blind-pick, ordinal optimization, or Monte Carlo methods. These numerical results are also validated by the theoretical complexity and overhead analysis provided.
机译:在云上调度多任务作业是一个NP难题。当在弹性云(例如Amazon EC2或IBM RC2)上执行复杂的工作流时,问题变得更加严重。主要困难在于庞大的搜索空间和生成最佳计划的高昂开销,尤其是对于具有动态工作负载的实时应用程序而言。在这项工作中,提出了一种新的(IOO)方法。在每次迭代中应用该方法以实现次优调度。 IOO的目标是长期从全球角度制定更有效的时间表。通过开销分析,我们证明了使用IOO方法在时间和空间效率方面的优势。 IOO方法旨在适应系统动态性,从而产生次优的性能。在IBM RC2云上的云实验中,我们在LIGO()验证工作流中在128个虚拟机上执行了20,000个任务。 IOO计划在不到1000秒的时间内生成,而使用蒙特卡洛模拟需要27.6小时,100倍的时间才能生成最佳计划。经过IOO优化的计划,在内存需求为7 GB的情况下,吞吐量为1100个任务/秒,相比之下,使用Monte Carlo方法的吞吐量减少了60%,内存需求增加了70%。我们的LIGO实验结果清楚地证明了使用基于IOO的工作流调度优于传统的盲选,有序优化或蒙特卡洛方法的优势。这些数值结果也通过提供的理论复杂性和开销分析得到了验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号