首页> 外文期刊>Cloud Computing, IEEE Transactions on >Accurate CPU Proportional Share and Predictable I/O Responsiveness for Virtual Machine Monitor: A Case Study in Xen
【24h】

Accurate CPU Proportional Share and Predictable I/O Responsiveness for Virtual Machine Monitor: A Case Study in Xen

机译:虚拟机监视器的准确CPU比例份额和可预测的I / O响应性:Xen中的案例研究

获取原文
获取原文并翻译 | 示例

摘要

In cloud computing, the performance of applications is heavily dependent on resource services provided by the virtualized environment. However, in some virtualized environment, such as Xen, the accuracy of CPU proportional share and the responsiveness of I/O processing are heavily dependent on the proportion of the allocated CPU resource. In this paper, we study how inaccurate share ratio of CPU proportional share and proportion dependent responsiveness of I/O affect the performance of Xen, and discover that they lead to unstable performance and is thus not able to conform service-level agreements (SLA). We conclude that the scheduling scheme and the coarse grained time-slice are the major negative impacts on this issue. Therefore, we propose a novel scheduling scheme, named Predictable Resource Guarantee Scheduler (PRGS), that achieves accurate CPU proportional share and predictable I/O responsiveness. We implement a PRGS prototype on Xen virtualization platform and carry out a thorough evaluation via experimentation. The experimental results show that PRGS achieves accurate CPU proportional share and predictable I/O responsiveness. Also, with only slight overhead, PRGS controls PING packet delay to a specified fixed time threshold (e.g. 30 ms in our experiments).
机译:在云计算中,应用程序的性能在很大程度上取决于虚拟化环境提供的资源服务。但是,在某些虚拟化环境(例如Xen)中,CPU比例份额的准确性和I / O处理的响应能力在很大程度上取决于分配的CPU资源的比例。在本文中,我们研究了CPU比例份额的不正确比例和I / O比例依赖的响应能力如何影响Xen的性能,并发现它们导致性能不稳定,因此无法符合服务级别协议(SLA) 。我们得出结论,调度方案和粗粒度时间片是对此问题的主要负面影响。因此,我们提出了一种新颖的调度方案,称为可预测资源保证调度程序(PRGS),该方案可实现准确的CPU比例份额和可预测的I / O响应能力。我们在Xen虚拟化平台上实现PRGS原型,并通过实验进行全面评估。实验结果表明PRGS实现了准确的CPU比例分配和可预测的I / O响应能力。而且,PRGS仅以很小的开销就可以将PING数据包延迟控制到指定的固定时间阈值(例如,在我们的实验中为30 ms)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号