首页> 外文期刊>Cloud Computing, IEEE Transactions on >SLA-Based Profit Optimization Resource Scheduling for Big Data Analytics-as-a-Service Platforms in Cloud Computing Environments
【24h】

SLA-Based Profit Optimization Resource Scheduling for Big Data Analytics-as-a-Service Platforms in Cloud Computing Environments

机译:基于SLA的利润优化资源调度,用于云计算环境中的大数据分析 - AS-Service平台

获取原文
获取原文并翻译 | 示例

摘要

Y The value that can be extracted from big data greatly motivates users to explore data analytics technologies for better decision making and problem solving in various application domains. Analytical solutions can be expensive due to the demand for large-scale and high-performance computing resources. To provision online big data Analytics-as-a-Service (AaaS) to users in various domains, a general purpose AaaS platform is required to deliver on-demand services at low cost and in an easy to use manner. Our research focuses on proposing efficient and automatic admission control and resource scheduling algorithms for AaaS platforms in cloud environments. In this paper, we propose scalable and automatic admission control and profit optimization resource scheduling algorithms, which effectively admit data analytics requests, dynamically provision resources, and maximize profit for AaaS providers, while satisfying QoS requirements of queries with Service Level Agreement (SLA) guarantees. Moreover, the proposed algorithms enable users to trade-off accuracy for faster response times and less resource costs for query processing on large datasets. We evaluate the algorithm performance by adopting a data splitting method to process smaller data samples as representatives of the original big datasets. We conduct extensive experiments to evaluate the proposed admission control and profit optimization scheduling algorithms. Experimental evaluation shows the algorithms perform significantly better compared to the state-of-the-art algorithms in enhancing profits, reducing resource costs, increasing query admission rates, and decreasing query response times.
机译:y可从大数据中提取的值极大地激励用户探索数据分析技术,以便在各种应用领域中解决更好的决策和解决问题。由于对大规模和高性能计算资源的需求,分析解决方案可能是昂贵的。为了将在线大数据分析(AAAS)提供给各个域中的用户,需要一种通用AAAS平台,以便以低成本提供按需服务,并且以易于使用的方式提供按需服务。我们的研究侧重于提出云环境中AAAS平台的高效和自动准入控制和资源调度算法。在本文中,我们提出了可扩展和自动准入控制和利润优化资源调度算法,其有效地承认数据分析请求,动态配置资源,以及最大限度地提高AAAS提供商的利润,同时满足与服务级别协议(SLA)保证的查询QoS要求。此外,所提出的算法使用户能够对大型数据集上的查询处理的更快响应时间和资源成本更快地进行权衡准确性。我们通过采用数据拆分方法来处理较小的数据样本作为原始大数据集的代表来评估算法性能。我们进行广泛的实验,以评估所提出的录取控制和利润优化调度算法。实验评估表明,与最先进的算法相比,算法与提高利润,降低资源成本,增加查询入门率和降低查询响应时间的最新算法相比更好地表现更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号