首页> 外文期刊>Cloud Computing, IEEE Transactions on >Adaptive Resource Management for Analyzing Video Streams from Globally Distributed Network Cameras
【24h】

Adaptive Resource Management for Analyzing Video Streams from Globally Distributed Network Cameras

机译:自适应资源管理,用于分析全局分布式网络摄像机的视频流

获取原文
获取原文并翻译 | 示例

摘要

There has been tremendous growth in the amount of visual data available on the Internet in recent years. One type of visual data of particular interest is produced by network cameras providing real-time views. Millions of network cameras around the world continuously stream data to viewers connected to the Internet. This data may be used by a wide variety of applications such as enhancing public safety, urban planning, emergency response, and traffic management which are computationally intensive. Analyzing this data requires significant amounts of computational resources. Cloud computing can be a preferred solution for meeting the resource requirements for analyzing these data. There are many options when selecting cloud instances (amounts of memory, number of cores, locations, etc.). Inefficient provisioning of cloud resources may become costly in pay-per-use cloud computing. This paper presents a method to select cloud instances in order to meet the performance requirements for visual data analysis at a lower cost. We measure the frame rates when analyzing the data using different computer vision methods and model the relationships between frame rates and resource utilizations. We formulate the problem of managing cloud resources as a Variable Size Bin Packing Problem and use a heuristic solution. Experiments using Amazon EC2 validate the model and demonstrate that the proposed solution can reduce the cost up to 62 percent while meeting the performance requirements.
机译:近年来互联网上可用的视觉数据数量巨大增长。特定兴趣的一种视觉数据由网络摄像机产生提供实时视图。全世界数百万网络摄像机将数据持续向连接到互联网的观众流。该数据可以通过各种应用来使用,例如提高计算上密集的公共安全,城市规划,应急响应和交通管理。分析此数据需要大量的计算资源。云计算可以是满足分析这些数据的资源要求的首选解决方案。选择云实例时有许多选项(内存量,核心数,位置等)。云资源的低效供应可能在每次使用付费云计算中昂贵。本文介绍了一种选择云实例的方法,以满足以较低的成本来满足可视数据分析的性能要求。在使用不同的计算机视觉方法和模型帧速率和资源利用之间的关系时,我们测量帧速率。我们制定管理云资源作为变量尺寸箱装问题的问题,并使用启发式解决方案。使用Amazon EC2的实验验证模型,并证明所提出的解决方案可以在满足性能要求时将成本降低至62%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号