首页> 外文期刊>Cloud Computing, IEEE Transactions on >An Adaptive and Fuzzy Resource Management Approach in Cloud Computing
【24h】

An Adaptive and Fuzzy Resource Management Approach in Cloud Computing

机译:云计算中的自适应和模糊资源管理方法

获取原文
获取原文并翻译 | 示例

摘要

Resource management plays a key role in the cloud-computing environment in which applications face with dynamically changing workloads. However, such dynamic and unpredictable workloads can lead to performance degradation of applications, especially when demands for resources are increased. To meet Quality of Service (QoS) requirements based on Service Level Agreements (SLA), resource management strategies must be taken into account. The question addressed in this research includes how to reduce the number of SLA violations based on the optimization of resources allocated to users applying an autonomous control cycle and a fuzzy knowledge management system. In this paper, an adaptive and fuzzy resource management framework (AFRM) is proposed in which the last resource values of each virtual machine are gathered through the environment sensors and are sent to a fuzzy controller. Then, AFRM analyzes the received information to make decision on how to reallocate the resources in each iteration of a self-adaptive control cycle. All the membership functions and rules are dynamically updated based on workload changes to satisfy QoS requirements. Two sets of experiments were conducted on the storage resource to examine AFRM in comparison to rule-based and static-fuzzy approaches in terms of RAE, utility, number of SLA violations, and cost applying HIGH, MEDIUM, MEDIUM-HIGH, and LOW workloads. The results reveal that AFRM outweighs the rule-based and static-fuzzy approaches from several aspects.
机译:资源管理在云计算环境中扮演一个关键作用,其中应用于动态变化的工作负载。但是,这种动态和不可预测的工作负载可能导致应用的性能下降,特别是当对资源的需求增加时。为了满足基于服务级别协议的服务质量(QoS)要求(SLA),必须考虑资源管理策略。本研究所涉及的问题包括如何根据分配给应用自主控制周期的用户的资源和模糊知识管理系统的资源的优化来减少SLA违规的数量。在本文中,提出了一种自适应和模糊资源管理框架(AFRM),其中通过环境传感器收集每个虚拟机的最后一个资源值,并被发送到模糊控制器。然后,AFRM分析所接收的信息,以决定如何在自适应控制周期的每次迭代中重新分配资源。所有隶属函数和规则都会根据工作负载变更动态更新以满足QoS要求。在存储资源上进行两组实验,以检查AFRM与RAE,效用,SLA违规数量的规则和静态模糊方法相比,以及应用高,中,中高和低工作量的成本。结果表明AFRM超过了几个方面的规则和静态模糊方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号