首页> 外文期刊>Cloud Computing, IEEE Transactions on >A Resource Usage Intensity Aware Load Balancing Method for Virtual Machine Migration in Cloud Datacenters
【24h】

A Resource Usage Intensity Aware Load Balancing Method for Virtual Machine Migration in Cloud Datacenters

机译:云数据中心虚拟机迁移的资源使用强度意识到负载均衡方法

获取原文
获取原文并翻译 | 示例

摘要

To provide robust infrastructure as a service (IaaS), clouds currently perform load balancing by migrating virtual machines (VMs) from heavily loaded physical machines (PMs) to lightly loaded PMs. The unique features of clouds pose formidable challenges to achieving effective and efficient load balancing. First, VMs in clouds use different resources (e.g., CPU, bandwidth, memory) to serve a variety of services (e.g., high performance computing, web services, file services), resulting in different overutilized resources in different PMs. Also, the overutilized resources in a PM may vary over time due to the time-varying heterogeneous service requests. Second, there is intensive network communication between VMs. However, previous load balancing methods statically assign equal or predefined weights to different resources, which lead to degraded performance in terms of speed and cost to achieve load balance. Also, they do not strive to minimize the VM communications between PMs. We propose a Resource Intensity Aware Load balancing method (RIAL). For each PM, RIAL dynamically assigns different weights to different resources according to their usage intensity in the PM, which significantly reduces the time and cost to achieve load balance and avoids future load imbalance. It also tries to keep frequently communicating VMs in the same PM to reduce bandwidth cost, and migrates VMs to PMs with minimum VM performance degradation. We also propose an extended version of RIAL with three additional algorithms. First, it optimally determines the weights for considering communication cost and performance degradation due to VM migrations. Second, it has a more strict migration triggering algorithm to avoid unnecessary migrations while still satisfying Service Level Objects (SLOs). Third, it conducts destination PM selection in a decentralized manner to improve scalability. Our extensive trace-driven simulation results and real-world experimental results show the superior performance of RIAL compared to other load balancing methods.
机译:为了提供强大的基础架构作为服务(IAAS),云目前通过将虚拟机(VM)从大量加载的物理机(PMS)迁移到轻量加载的PMS来执行负载平衡。云的独特特征构成了实现有效和高效的负载平衡的强大挑战。首先,云中的虚拟机使用不同的资源(例如,CPU,带宽,内存)来服务各种服务(例如,高性能计算,Web服务,文件服务),从而导致不同PM中的不同过度资源。此外,PM中的过度化资源可能随着时间变化的异构服务请求而随时间而变化。其次,VM之间存在密集的网络通信。然而,以前的负载平衡方法静态分配相同或预定义权重到不同的资源,这导致在速度和成本方面劣化,以实现负载平衡。此外,它们并不努力最小化PM之间的VM通信。我们提出了一种资源强度意识的负载平衡方法(RIAL)。对于每个PM,RIAL根据PM的使用强度动态地将不同的权重分配给不同的资源,这显着降低了实现负载平衡的时间和成本,避免了未来负载不平衡。它还试图在同一PM中保持频繁传送VM以降低带宽成本,并将VM迁移到PM,最小VM性能下降。我们还提出了一个延长版本的,其中包括三种额外的算法。首先,它最佳地确定用于考虑由于VM迁移引起的通信成本和性能下降的权重。其次,它具有更严格的迁移触发算法,以避免不必要的迁移,同时仍然满足服务级别对象(SLO)。第三,它以分散的方式进行目的地PM选择以提高可扩展性。我们广泛的追踪仿真结果和现实世界的实验结果表明,与其他负载平衡方法相比,LiaL的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号