首页> 外文期刊>Climate dynamics >Spatial association of anomaly correlation for GCM seasonal forecasts of global precipitation
【24h】

Spatial association of anomaly correlation for GCM seasonal forecasts of global precipitation

机译:全球降水GCM季节性预测的异常相关性的空间协会

获取原文
获取原文并翻译 | 示例

摘要

Global climate models (GCMs) are used by major climate centers worldwide for global climate forecasting, and predictive performance is one of the most important issues in GCM forecast applications. In addition to spatial plotting that illustrates anomaly correlation at individual grid cells, this study proposes a novel local indicator of spatial association (LISA) of anomaly correlation (herein, LISAAC) for GCM seasonal forecasts of global precipitation. LISAAC is built upon local Moran's I by relating anomaly correlation at neighboring grid cells to one another. While local Moran's I takes the grand mean of anomaly correlation as the benchmark, LISSAC considers the original value of anomaly correlation in the mathematical formulation. A case study is devised for the Climate Forecast System version 2 (CFSv2) seasonal forecasts, which are initialized in January, February, horizontal ellipsis , and June, of the global precipitation in June, July, and August. Three metrics-LISAAC, local Moran's I, and original anomaly correlation-are applied to investigate the predictive performance. In comparison with local Moran's I, LISAAC can identify clusters of positive, neutral, and negative anomaly correlations. In comparison with anomaly correlation, LISAAC can capture outliers of positive (negative) anomaly correlation surrounded by negative (positive) anomaly correlation. Overall, the results highlight that LISAAC can serve as a useful tool for evaluating the predictive performance of GCM seasonal forecasts of global precipitation.
机译:全球气候模型(GCMS)被全球气候中心用于全球气候预测,预测性能是GCM预测应用中最重要的问题之一。除了显示在各个网格细胞的异常相关性的空间曲线外,本研究提出了一种新的局部局部指标(LISA)的异常相关性(本文,LISAAC),用于全球降水的GCM季节性预测。通过在彼此彼此的异常相关性彼此相关的异常相关性,建立在本地莫兰的I基础上。虽然本地莫兰的我将异常相关性的宏观陈词作为基准,但Lissac考虑了数学制定中异常相关性的原始值。案例研究设计为气候预测系统版本2(CFSv2)季节性预测,该预测在6月,7月和8月的全球降水中初始化,在2月份,2月,横向省份和6月份初始化。三个梅兰人 - 利萨克,地方莫兰的I和原始异常相关 - 适用于调查预测性能。与局部莫兰的I相比,Lisaac可以识别阳性,中性和阴性异常相关的簇。与异常相关性相比,Lisaac可以捕获因阴性(阳性)异常相关包围的正(阴性)异常相关的异常值。总体而言,结果强调了Lisaac可以作为评估GCM季节性预测的预测性能的有用工具。

著录项

  • 来源
    《Climate dynamics》 |2020年第8期|2273-2286|共14页
  • 作者单位

    Sun Yat Sen Univ Ctr Water Resources & Environm Sch Civil Engn Southern Marine Sci & Engn Guangdong Lab Zhuhai Guangzhou 510275 Peoples R China;

    Sun Yat Sen Univ Ctr Water Resources & Environm Sch Civil Engn Southern Marine Sci & Engn Guangdong Lab Zhuhai Guangzhou 510275 Peoples R China;

    Sun Yat Sen Univ Sch Atmospher Sci Guangzhou 510275 Peoples R China;

    Sun Yat Sen Univ Sch Marine Engn & Technol Inst Estuarine & Coastal Res Guangzhou 510275 Peoples R China;

    Inst Water Resources & Hydropower Res IWHR State Key Lab Simulat & Regulat Water Cycle River Beijing 100038 Peoples R China;

    Sun Yat Sen Univ Ctr Water Resources & Environm Sch Civil Engn Southern Marine Sci & Engn Guangdong Lab Zhuhai Guangzhou 510275 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号