首页> 外文期刊>Circuits, systems, and signal processing >A New Method for the Estimation of Mass Functions in the Dempster-Shafer's Evidence Theory:Application to Colour Image Segmentation
【24h】

A New Method for the Estimation of Mass Functions in the Dempster-Shafer's Evidence Theory:Application to Colour Image Segmentation

机译:Dempster-Shafer证据理论中质量函数估计的新方法:在彩色图像分割中的应用

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the problem of colour image segmentation is addressed using the Dempster-Shafer (DS) theory. Examples are provided showing that this theory is able to take into account a large variety of special situations that occur and which are not well solved using classical approaches. Modelling both uncertainty and imprecision, and computing the conflict between images and introducing a priori information are the main features of this theory. Consequently, the performance of such a segmentation scheme is largely conditioned by the appropriate estimation of mass functions in the DS evidence theory. In this paper, a new method of automatically determining the mass function for colour-image segmentation problems is presented. The mass function of each pixel is determined by applying possibilistic c-means (PCM) clustering to the grey levels of the three primitive colours. A reliability criterion, associ- ated with each pixel and the mass functions ot its neighbouring pixels, is used into a fuzzy based reasoning system in order to decide on the appropriate segmentation. Experimental segmentation results on medical and textured colour images highlight the effectiveness of the proposed method.
机译:在本文中,使用Dempster-Shafer(DS)理论解决了彩色图像分割问题。提供的示例表明,该理论能够考虑发生的各种特殊情况,而这些特殊情况无法使用经典方法很好地解决。对不确定性和不精确性进行建模,以及计算图像之间的冲突并引入先验信息是该理论的主要特征。因此,这种分割方案的性能很大程度上取决于DS证据理论中对质量函数的适当估计。本文提出了一种自动确定质量函数的彩色图像分割问题的新方法。通过将可能的c均值(PCM)聚类应用于三种原始颜色的灰度级,可以确定每个像素的质量函数。与每个像素及其邻近像素的质量函数相关联的可靠性标准被用于基于模糊的推理系统中,以决定适当的分割。在医学和纹理彩色图像上的实验分割结果凸显了该方法的有效性。

著录项

  • 来源
    《Circuits, systems, and signal processing》 |2011年第1期|p.55-71|共17页
  • 作者单位

    SICISI Unit, ESSTT, University of Tunis, 5 Av. Taha Hussein, 1008 Tunis, Tunisia;

    SICISI Unit, ESSTT, University of Tunis, 5 Av. Taha Hussein, 1008 Tunis, Tunisia,Laboratory for Innovation Technologies (LTI-UPRES EA3899), Electrical Power Engineering Group (EESA), University of Picardie Jules Verne, 7, rue du Moulin Neuf, 80000 Amiens, France;

    SICISI Unit, ESSTT, University of Tunis, 5 Av. Taha Hussein, 1008 Tunis, Tunisia,Laboratory for Innovation Technologies (LTI-UPRES EA3899), Electrical Power Engineering Group (EESA), University of Picardie Jules Verne, 7, rue du Moulin Neuf, 80000 Amiens, France,ETS, Dept. Elec. Eng, Univ. Quebec at Montreal, 1100 Rue Notre Dame ouest, Montreal, H3C1K3 Quebec, Canada;

    Laboratory for Innovation Technologies (LTI-UPRES EA3899), Electrical Power Engineering Group (EESA), University of Picardie Jules Verne, 7, rue du Moulin Neuf, 80000 Amiens, France;

    Laboratory for Innovation Technologies (LTI-UPRES EA3899), Electrical Power Engineering Group (EESA), University of Picardie Jules Verne, 7, rue du Moulin Neuf, 80000 Amiens, France;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    dempster-shafer's evidence theory; data fusion; conflict; fuzzy clustering; possibilistic approaches;

    机译:邓普斯-谢弗的证据理论;数据融合;冲突;模糊聚类;可能的方法;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号