首页> 外文期刊>Circuits, systems, and signal processing >Reducing the Sampling Complexity of Energy Detection in Cognitive Radio Networks under Low SNR by Using the Optimal Stochastic Resonance Technique
【24h】

Reducing the Sampling Complexity of Energy Detection in Cognitive Radio Networks under Low SNR by Using the Optimal Stochastic Resonance Technique

机译:最优随机共振技术降低低信噪比下认知无线电网络能量检测的采样复杂度

获取原文
获取原文并翻译 | 示例

摘要

We propose a novel noncooperative technique in cognitive radio (CR) networks, which is based on the optimal stochastic resonance (SR) technique. By introducing the dynamic system approach of SR into the noncooperative spectrum sensing process, the defect of high sampling complexity of traditional energy detector can be reduced efficiently and thus can guarantee the applicability of the optimal SR-based energy detection method. The optimization of the signal-to-noise ratio (SNR) improvement of the system ensures the lowest sampling complexity needed to reach certain performance requirement. Computer simulations show that it can reduce the sampling complexity compared with traditional energy detector used in IEEE 802.22 draft especially under low SNR environments. It can certainly be extended to other wide application areas.
机译:我们提出了一种基于最优随机共振(SR)技术的认知无线电(CR)网络中的新型非合作技术。通过将SR的动态系统方法引入到非合作频谱检测过程中,可以有效地减少传统能量检测器采样复杂度高的缺陷,从而可以保证基于SR的最优能量检测方法的适用性。系统信噪比(SNR)改进的优化确保了达到特定性能要求所需的最低采样复杂度。计算机仿真表明,与IEEE 802.22草案中使用的传统能量检测器相比,它可以降低采样复杂度,尤其是在低SNR环境下。当然,它可以扩展到其他广泛的应用领域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号