首页> 外文期刊>Circuits, systems, and signal processing >Logarithmic Uncertainty Relations for Odd or Even Signals Associate with Wigner-Ville Distribution
【24h】

Logarithmic Uncertainty Relations for Odd or Even Signals Associate with Wigner-Ville Distribution

机译:Wigner-Ville分布与奇数或偶数信号的对数不确定性关系

获取原文
获取原文并翻译 | 示例

摘要

Heisenberg's uncertainty relation is a basic principle in the applied mathematics and signal processing community. The logarithmic uncertainty relation, which is a more general form of Heisenberg's uncertainty relation, describes the relationship between a function and its Fourier transform. In this paper, we consider several logarithmic uncertainty relations for a odd or even signal f(t) related to the Wigner-Ville distribution and the linear canonical transform. First, the logarithmic uncertainty relations associated with the Wigner-Ville distribution of a signal f(t) based on the Fourier transform are obtained. We then generalize the logarithmic uncertainty relation to the linear canonical transform domain and derive a number of theorems relating to the Wigner-Ville distribution and the ambiguity function; finally, the logarithmic uncertainty relations are obtained for the Wigner-Ville distribution associated with the linear canonical transform. We present an example in which the theorems derived in this paper can be used to provide an estimation for a practical signal.
机译:海森堡的不确定性关系是应用数学和信号处理界的基本原则。对数不确定性关系是海森堡不确定性关系的更一般形式,它描述了函数及其傅里叶变换之间的关系。在本文中,我们考虑了与Wigner-Ville分布和线性规范变换有关的奇数或偶数信号f(t)的对数不确定性关系。首先,基于傅立叶变换获得与信号f(t)的Wigner-Ville分布相关的对数不确定性关系。然后,我们将对数不确定性关系推广到线性典范变换域,并得出与Wigner-Ville分布和模糊函数有关的多个定理。最后,获得与线性典范变换相关的Wigner-Ville分布的对数不确定关系。我们提供了一个示例,其中本文得出的定理可用于提供实际信号的估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号