首页> 外文期刊>Circuits, systems, and signal processing >A Low-Complexity Approach to Computation of the Discrete Fractional Fourier Transform
【24h】

A Low-Complexity Approach to Computation of the Discrete Fractional Fourier Transform

机译:离散分数阶傅里叶变换的低复杂度计算方法

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes an effective approach to the computation of the discrete fractional Fourier transform for an input vector of any length N. This approach uses specific structural properties of the discrete fractional Fourier transformation matrix. Thanks to these properties, the fractional Fourier transformation matrix can be decomposed into a sum of three or two matrices, one of which is a dense matrix, and the rest of the matrix components are sparse matrices. The aforementioned dense matrix has unique structural properties that allow advantageous factorization. This factorization is the main contributor to the reduction in the overall computational complexity of the discrete fractional Fourier transform computation. The remaining calculations do not contribute significantly to the total amount of computation. Thus, the proposed approach allows to reduce the number of arithmetic operations when calculating the discrete fractional Fourier transform.
机译:本文针对任何长度为N的输入矢量,提出了一种计算离散分数阶傅里叶变换的有效方法。该方法利用了离散分数阶傅里叶变换矩阵的特定结构特性。由于这些特性,分数阶傅里叶变换矩阵可以分解为三个或两个矩阵的总和,其中一个是密集矩阵,其余矩阵分量是稀疏矩阵。前述的致密基质具有独特的结构特性,可以进行有利的分解。这种分解是减少离散分数阶傅里叶变换计算的整体计算复杂度的主要因素。其余计算对计算总量的贡献不大。因此,提出的方法允许在计算离散分数阶傅里叶变换时减少算术运算的数量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号