首页> 外文期刊>Circuits, systems, and signal processing >An Expectation-Maximization Algorithm for Blind Separation of Noisy Mixtures Using Gaussian Mixture Model
【24h】

An Expectation-Maximization Algorithm for Blind Separation of Noisy Mixtures Using Gaussian Mixture Model

机译:高斯混合模型盲分离含噪混合物的期望最大化算法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a new expectation-maximization (EM) algorithm, named GMM-EM, to blind separation of noisy instantaneous mixtures, in which the non-Gaussianity of independent sources is exploited by modeling their distribution using the Gaussian mixture model (GMM). The compatibility between the incomplete-data structure of the GMM and the hidden variable nature of the source separation problem leads to an efficient hierarchical learning and alternative method for estimating the sources and the mixing matrix. In comparison with conventional blind source separation algorithms, the proposed GMM-EM algorithm has superior performance for the separation of noisy mixtures due to the fact that the covariance matrix of the additive Gaussian noise is treated as a parameter. Furthermore, the GMM-EM algorithm works well in underdetermined cases by incorporating any prior information one may have and jointly estimating the mixing matrix and source signals in a Bayesian framework. Systematic simulations with both synthetic and real speech signals are used to show the advantage of the proposed algorithm over conventional independent component analysis techniques, such as FastICA, especially for noisy and/or underdetermined mixtures. Moreover, it can even achieve similar performance to a recent technique called null space component analysis with less computational complexity.
机译:在本文中,我们提出了一种新的期望最大化(EM)算法,即GMM-EM,以盲目的分离嘈杂的瞬时混合物,其中通过使用高斯混合模型对独立来源的分布进行建模来利用独立来源的非高斯性( GMM)。 GMM的不完整数据结构与源分离问题的隐藏变量性质之间的兼容性导致了高效的分层学习以及估算源和混合矩阵的替代方法。与传统的盲源分离算法相比,由于将加性高斯噪声的协方差矩阵作为参数,因此提出的GMM-EM算法在噪声混合物的分离方面具有优越的性能。此外,GMM-EM算法在不确定的情况下可以很好地工作,因为它可以合并一个人可能拥有的任何先验信息,并在贝叶斯框架中共同估计混合矩阵和源信号。具有合成和真实语音信号的系统仿真被用来显示所提出的算法相对于传统的独立成分分析技术(例如FastICA)的优势,特别是对于嘈杂和/或不确定的混合物。而且,它甚至可以以较少的计算复杂性来实现与称为零空间分量分析的最新技术类似的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号