首页> 外文期刊>Circuits, systems, and signal processing >Wavelet De-Noising and Genetic Algorithm-Based Least Squares Twin SVM for Classification of Arrhythmias
【24h】

Wavelet De-Noising and Genetic Algorithm-Based Least Squares Twin SVM for Classification of Arrhythmias

机译:基于小波消噪和遗传算法的最小二乘支持向量机的心律失常分类

获取原文
获取原文并翻译 | 示例

摘要

The automatic detection of cardiac arrhythmias is a challenging task since the small variations in electrocardiogram (ECG) signals cannot be distinguished by the human eye. We propose a fast recognition method to diagnose heart diseases that is less time consuming and achieves better performance by combining wavelet de-noising with a genetic algorithm (GA)-based least squares twin support vector machine (LSTSVM). First, adaptive wavelet de-noising is employed for noise reduction. Second, power spectral density in combination with timing interval features is extracted to evaluate the classifier. Finally, a GA, particle swarm optimization (PSO), and chaotic PSO are compared for parameter optimization of the proposed directed acyclic graph LSTSVM multiclass classifiers. ECG heartbeats taken from the MIT-BIH arrhythmia database are used to examine the proposed method and other traditional classifiers such as multilayer perception, probabilistic neural network, learning vector quantization, extreme learning machine, SVM, and current TWSVMs. Number of our training samples is < 3.2 % of all samples. Our proposed method demonstrates a high classification accuracy of 99.1403 % with low ratio of training and testing sample sizes; furthermore, it achieves a more rapid training and testing time of 0.2044 and 55.7383 s, respectively.
机译:心律失常的自动检测是一项具有挑战性的任务,因为心电图(ECG)信号的微小变化无法被人眼识别。我们提出了一种快速识别方法,可以将小波消噪与基于遗传算法(GA)的最小二乘双支持向量机(LSTSVM)结合起来,从而减少心脏病诊断的时间,并获得更好的性能。首先,采用自适应小波降噪来降低噪声。其次,结合时序间隔特征提取功率谱密度以评估分类器。最后,比较了遗传算法,粒子群优化算法(PSO)和混沌PSO算法对所提出的有向无环图LSTSVM多类分类器的参数进行了优化。从MIT-BIH心律失常数据库中获取的ECG心跳用于检查所提出的方法和其他传统分类器,例如多层感知,概率神经网络,学习向量量化,极限学习机,SVM和当前的TWSVM。我们的训练样本数量少于所有样本的3.2%。我们提出的方法证明了99.1403%的高分类精度,并且训练和测试样本量的比率较低;此外,它实现了更快的培训和测试时间,分别为0.2044和55.7383 s。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号