首页> 外文期刊>Circuits, systems, and signal processing >Fractional Fourier Transform and Fractional-Order Calculus-Based Image Edge Detection
【24h】

Fractional Fourier Transform and Fractional-Order Calculus-Based Image Edge Detection

机译:基于分数阶傅里叶变换和分数阶微积分的图像边缘检测

获取原文
获取原文并翻译 | 示例

摘要

Edge detection is an integral component of image processing to enhance the clarity of edges in an image. Detection of edges for an image may help for image segmentation, data compression, and image reconstruction. Edges of an image are considered a type of crucial information that can be extracted by applying detectors with different methodologies. Its main purpose is to simplify the image data in order to minimize the amount of data to be processed. There exist many rich classical edge detection techniques which make use of integer-order differentiation operators and can function in both spatial and frequency domains. In the case of integer-order differentiation operators, the gradient operator is identified by order 'one' and the Laplacian by order 'two.' This paper demonstrates a new kind of edge detector based on the 'fractional' ('non-integer')-order differentiation operation and through the usage of the 'fractional Fourier transformation' tool, so as to perform it in the fractional Fourier frequency domain, known as the edge detection based on fractional signal processing approach. It is shown through computer simulations that this approach can detect the edges precisely and efficiently. Finally, the performance of the proposed methodology is illustrated from the quantitative aspects of mean square error and peak signal-to-noise ratio through simulations. The experiments show that, for any grayscale image, this method can obtain better edge detection performance to satisfy human visual sense. Moreover, comparisons are also provided to prove that the proposed method outperforms the classical edge detection operators, interpreted in terms of robustness to noise.
机译:边缘检测是图像处理中不可或缺的组成部分,可增强图像边缘的清晰度。图像边缘的检测可以帮助图像分割,数据压缩和图像重建。图像的边缘被认为是一种关键信息,可以通过应用具有不同方法的检测器来提取这些信息。其主要目的是简化图像数据,以最小化要处理的数据量。存在许多丰富的经典边缘检测技术,这些技术利用整数阶微分算子并可以在空间和频域中起作用。对于整数阶微分算子,梯度算子由阶“ 1”标识,而拉普拉斯算子由阶“ 2”标识。本文演示了一种基于“分数”(“非整数”)阶微分运算并通过使用“分数傅立叶变换”工具的新型边缘检测器,以便在分数傅立叶频域中执行该检测器,称为基于分数信号处理方法的边缘检测。通过计算机仿真表明,这种方法可以精确有效地检测边缘。最后,通过仿真从均方误差和峰值信噪比的定量方面说明了所提出方法的性能。实验表明,对于任何灰度图像,该方法都能获得较好的边缘检测性能,满足人类的视觉需求。此外,还提供了比较以证明所提出的方法优于经典的边缘检测算子,以对噪声的鲁棒性来解释。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号