首页> 外文期刊>Circuits, systems, and signal processing >Compressive Sensing Signal Reconstruction Using LO-Norm Normalized Least Mean Fourth Algorithms
【24h】

Compressive Sensing Signal Reconstruction Using LO-Norm Normalized Least Mean Fourth Algorithms

机译:基于LO-Norm归一化最小均值四次算法的压缩感知信号重构

获取原文
获取原文并翻译 | 示例

摘要

Stochastic gradient-based adaptive algorithm has recently attracted considerable attention as one of the best candidates for solving compressive sensing (CS) problems due to its two obvious advantages: low complexity and robust performance. In this paper, in order to further improve the reconstruction accuracy for CS problems under Gaussian background noise, two novel sparse fourth-order error criterion adaptive algorithms, i.e., the -norm normalized least mean fourth (-NLMF) algorithm and the -norm exponentially forgetting window NLMF (-EFWNLMF) algorithm, are proposed. In addition, to extend the obtained results to non-Gaussian noise environment, the variants of the above two algorithms, i.e., the sign -NLMF (-SNLMF) algorithm and the sign -EFWNLMF (-EFWSNLMF) algorithm, are presented which can effectively mitigate certain impulsive noises. Numerical simulations are also given to demonstrate the evident performance improvement and extensive stability of the proposed algorithms.
机译:基于随机梯度的自适应算法由于具有两个明显的优势:低复杂度和鲁棒性能,作为解决压缩感测(CS)问题的最佳候选者之一已引起了广泛的关注。为了进一步提高高斯背景噪声下CS问题的重构精度,提出了两种新颖的稀疏四阶误差准则自适应算法,即-norm归一化最小均方第四(-NLMF)算法和-norm指数提出了遗忘窗NLMF(-EFWNLMF)算法。此外,为了将获得的结果扩展到非高斯噪声环境,提出了两种算法的变体,即-NLMF(-SNLMF)符号和-EFWNLMF(-EFWSNLMF)算法。减轻某些脉冲噪声。数值仿真也证明了所提出算法的明显性能改进和广泛的稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号