首页> 外文期刊>Circuits, systems, and signal processing >Robust Recognition of Noisy Speech Through Partial Imputation of Missing Data
【24h】

Robust Recognition of Noisy Speech Through Partial Imputation of Missing Data

机译:通过部分归因于丢失数据对噪声语音的鲁棒识别

获取原文
获取原文并翻译 | 示例

摘要

Two main categories of speech recognition robustness through missing data are spectral imputation and classifier modification. In this paper, we introduce a novel technique that could combine methods from these two categories while improving the accuracy of the combined methods. Methods in these two categories are rarely employed together due to their incompatible structures. Based on our previous work, we propose a technique to solve the problem of incompatibility. The technique is based on the idea of partial restoration of the log-spectrum. We decide to whether restore or estimate a possible range for the missing component. We also propose a method to more effectively employ dynamic features. The combined techniques are a classic spectral imputation method and our previously proposed classifier modification technique, namely spectral variance learning. The experiments show that the proposed technique is able to improve the accuracies of both combined techniques significantly, leading to improvements in recognition accuracy as high as nearly four percent on Aurora 2.0 data and more than two percent on a noisy version of TIMIT data.
机译:通过丢失数据,语音识别鲁棒性的两个主要类别是频谱归因和分类器修改。在本文中,我们介绍了一种新颖的技术,该技术可以将这两种类别的方法进行组合,同时提高组合方法的准确性。由于这两种方法的结构不兼容,因此很少一起使用。在我们之前的工作的基础上,我们提出了一种解决不兼容问题的技术。该技术基于部分恢复对数谱的想法。我们决定要恢复还是估计缺失组件的可能范围。我们还提出了一种更有效地利用动态特征的方法。组合技术是一种经典的频谱插补方法,也是我们先前提出的分类器修改技术,即频谱方差学习。实验表明,所提出的技术能够显着提高两种组合技术的准确性,从而导致Aurora 2.0数据的识别准确度提高了近4%,而嘈杂的TIMIT数据的识别准确率则提高了2%以上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号