首页> 外文期刊>Circuits, systems, and signal processing >Performance Analysis of Blind Source Separation Using Canonical Correlation
【24h】

Performance Analysis of Blind Source Separation Using Canonical Correlation

机译:典型相关的盲源分离性能分析

获取原文
获取原文并翻译 | 示例

摘要

Separation of blind source signals from a mixture remains an open issue. Many algorithms have been proposed for blind source separation (BSS) in the literature, but none outperforms the other. Most of the earlier BSS methods were based on the assumption that the sources are independent and non-Gaussian. From the literature, it is observed that speech signals are modelled using Gaussian models. This work focuses on a new approach for BSS in speech processing applications by considering the second-order statistics of the speech signals based on a canonical correlation approach. The performance of the algorithm is analyzed using signal-to-interference ratio, signal-to-distortion ratio, signal-to-artifact ratio and signal-to-noise ratio. Simulation results highlight the better performance of the proposed method as compared to the state of the art approaches like principal component analysis, singular value decomposition and independent component analysis algorithms.
机译:从混合物中分离盲源信号仍然是一个未解决的问题。文献中已经提出了许多用于盲源分离(BSS)的算法,但是没有一种算法优于其他算法。大多数早期的BSS方法都是基于以下假设:源是独立的且非高斯的。从文献中可以看出,语音信号是使用高斯模型建模的。这项工作着重于通过基于典范相关性方法考虑语音信号的二阶统计量来研究语音处理应用中BSS的新方法。使用信号干扰比,信号失真比,信号伪像比和信噪比分析算法的性能。与主要成分分析,奇异值分解和独立成分分析算法等最新方法相比,仿真结果突出了所提出方法的更好性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号