首页> 外文期刊>Circuits, systems and signal processing >Distributed Dimensionality Reduction Fusion Kalman Filtering With Quantized Innovations
【24h】

Distributed Dimensionality Reduction Fusion Kalman Filtering With Quantized Innovations

机译:随着量化创新的分布维度减少融合卡尔曼滤波

获取原文
获取原文并翻译 | 示例

摘要

This paper is concerned with the distributed fusion Kalman filtering problem for networked systems with communication constraints. A dimensionality reduction strategy and a uniform quantization strategy are introduced to reduce communication traffic. To overcome the unboundedness of estimates/measurements in unstable systems, it is proposed to quantize the innovations that are sent to the fusion center through limited bandwidth channels. Then, a recursively distributed dimensionality reduction fusion Kalman filtering algorithm is developed by using a model uncertainty method to process quantization noises. Finally, a target tracking system is employed to demonstrate the effectiveness of the proposed methods.
机译:本文涉及具有通信约束的网络系统的分布式融合卡尔曼滤波问题。 引入了维度减少策略和统一的量化策略以减少通信流量。 为了克服不稳定系统中的估计/测量的无界面,建议通过有限的带宽通道来量化将发送到融合中心的创新。 然后,通过使用模型不确定方法来处理量化噪声来开发递推分布的维度减少融合算法。 最后,采用目标跟踪系统来证明所提出的方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号