首页> 外文期刊>Circuits, systems and signal processing >RANSAC-Based Signal Denoising Using Compressive Sensing
【24h】

RANSAC-Based Signal Denoising Using Compressive Sensing

机译:基于RANSAC的信号去噪使用压缩感测

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present an approach to the reconstruction of signals exhibiting sparsity in a transformation domain, having some heavily disturbed samples. This sparsity-driven signal recovery exploits a carefully suited random sampling consensus (RANSAC) methodology for the selection of a subset of inlier samples. To this aim, two fundamental properties are used: A signal sample represents a linear combination of the sparse coefficients, whereas the disturbance degrades the original signal sparsity. The properly selected samples are further used as measurements in the sparse signal reconstruction, performed using algorithms from the compressive sensing framework. Besides the fact that the disturbance degrades signal sparsity in the transformation domain, no other disturbance-related assumptions are made-there are no special requirements regarding its statistical behavior or the range of its values. As a case study, the discrete Fourier transform is considered as a domain of signal sparsity, owing to its significance in signal processing theory and applications. Numerical results strongly support the presented theory. In addition, the exact relation for the signal-to-noise ratio of the reconstructed signal is also presented. This simple result, which conveniently characterizes the RANSAC-based reconstruction performance, is numerically confirmed by a set of statistical examples.
机译:在本文中,我们提出了一种在转化域中表现出稀疏性的信号的方法,具有一些严重扰乱的样品。这种稀疏驱动的信号恢复利用仔细适合随机采样共识(RANSAC)方法,以选择Inlier样本的子集。为此目的,使用两个基本属性:信号样本表示稀疏系数的线性组合,而干扰会降低原始信号稀疏性。所选择的样本进一步用作稀疏信号重建中的测量值,使用来自压缩感测框架的算法执行。除了扰动降低转换域中的信号稀疏性的事实外,还没有产生其他与扰动相关的假设 - 没有关于其统计行为的特殊要求或其值的范围。作为案例研究,由于其在信号处理理论和应用中的意义,离散傅里叶变换被认为是信号稀疏的领域。数值结果强烈支持呈现的理论。另外,还呈现了对重建信号的信噪比的确切关系。这种简单的结果,它方便地表征了基于Ransac的重建性能,通过一组统计示例进行了数值证实。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号