首页> 外文期刊>Circuits, systems and signal processing >Global Gravitational Search Algorithm-Aided Kalman Filter Design for Volterra-Based Nonlinear System Identification
【24h】

Global Gravitational Search Algorithm-Aided Kalman Filter Design for Volterra-Based Nonlinear System Identification

机译:全局引力搜索算法 - 基于Volterra的非线性系统识别的辅助卡尔曼滤波器设计

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes an efficient global gravitational search (GGS) algorithm-assisted Kalman filter (KF) design, called a GGS-KF technique, for accurate estimation of the Volterra-type nonlinear systems. KF is a well-known estimation technique for the dynamic states of the system. The best estimate is achieved if the system dynamics and noise statistical model parameters are available at the beginning. However, to estimate the real-time problems, these parameters are unstipulated or partly known. Due to this limitation, the performance of the KF degrades or sometimes diverges. In this work, two steps have been proposed for unknown system identification while overcoming the difficulty encountered in KF. The first step is to optimise the parameters of the KF using the GGS algorithm by considering a properly balanced fitness function. The second step is to estimate the unknown coefficients of the system by using the basic KF method with the optimally tuned KF parameters obtained from the first step. The proposed GGS-KF technique is tested on five different Volterra systems with various levels of noisy (10 dB, 15 dB and 20 dB) and noise-free input conditions. The simulation results confirm that the GGS-KF-based identification approach results in the most accurate estimations compared to the conventional KF and other reported techniques in terms of parameter estimation error, mean-squared error (MSE), fitness percentage (FIT%), mean-squared deviation (MSD), and cumulative density function (CDF). To validate the practical applicability of the proposed technique, two benchmark systems have also been identified based on the original data sets.
机译:本文提出了一种高效的全局引力搜索(GGS)算法辅助卡尔曼滤波器(KF)设计,称为GGS-KF技术,用于精确估计Volterra型非线性系统。 KF是系统动态状态的众所周知的估计技术。如果启动系统动态和噪声统计模型参数可用,则实现了最佳估计。然而,为了估计实时问题,这些参数是未敏化的或部分已知的。由于这种限制,KF的性能降低或有时偏离。在这项工作中,已经提出了两个步骤,以克服KF遇到的难题。第一步是通过考虑适当平衡的健身功能,使用GGS算法优化KF的参数。第二步是通过使用基本KF方法来估计系统的未知系数,利用从第一步获得的最佳调整的KF参数。所提出的GGS-KF技术在五种不同的Volterra系统上进行测试,具有各种噪声(10dB,15 dB和20 dB)和无噪声输入条件。仿真结果证实,基于GGS-KF的识别方法导致最准确的估计与传统的KF和其他报告的技术相比,参数估计误差,平均误差(MSE),FITSHED百分比(FIT%),平均平方偏差(MSD)和累积密度函数(CDF)。为了验证所提出的技术的实际适用性,还基于原始数据集识别了两个基准系统。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号