首页> 外文期刊>Circuits, systems and signal processing >Dual-Transform Source Separation Using Sparse Nonnegative Matrix Factorization
【24h】

Dual-Transform Source Separation Using Sparse Nonnegative Matrix Factorization

机译:使用稀疏非负矩阵分解的双变换源分离

获取原文
获取原文并翻译 | 示例

摘要

In this article, we propose a new source separation method in which the dual-tree complex wavelet transform (DTCWT) and short-time Fourier transform (STFT) algorithms are used sequentially as dual transforms and sparse nonnegative matrix factorization (SNMF) is used to factorize the magnitude spectrum. STFT-based source separation faces issues related to time and frequency resolution because it cannot exactly determine which frequencies exist at what time. Discrete wavelet transform (DWT)-based source separation faces a time-variation-related problem (i.e., a small shift in the time-domain signal causes significant variation in the energy of the wavelet coefficients). To address these issues, we utilize the DTCWT, which comprises two-level trees with different sets of filters and provides additional information for analysis and approximate shift invariance; these properties enable the perfect reconstruction of the time-domain signal. Thus, the time-domain signal is transformed into a set of subband signals in which low- and high-frequency components are isolated. Next, each subband is passed through the STFT and a complex spectrogram is constructed. Then, SNMF is applied to decompose the magnitude part into a weighted linear combination of the trained basis vectors for both sources. Finally, the estimated signals can be obtained through a subband binary ratio mask by applying the inverse STFT (ISTFT) and the inverse DTCWT (IDTCWT). The proposed method is examined on speech separation tasks utilizing the GRID audiovisual and TIMIT corpora. The experimental findings indicate that the proposed approach outperforms the existing methods.
机译:在本文中,我们提出了一种新的源分离方法,其中双树复合小波变换(DTCWT)和短时傅里叶变换(STFT)算法顺序使用,作为双变换和稀疏的非负矩阵分解(SNMF)用于分解幅度谱。基于STFT的源分离面临与时间和频率分辨率相关的问题,因为它无法准确确定在什么时间存在的频率。基于离散小波变换(DWT)的源分离面对与时间变化相关的问题(即,时域信号中的小变频导致小波系数的能量的显着变化)。为了解决这些问题,我们利用DTCWT,该DTCWT包括具有不同滤波器组的两级树,并提供用于分析和近似换档不变性的其他信息;这些属性使得时域信号的完美重建。因此,时域信号被转换成一组子带信号,其中隔离低频和高频分量。接下来,通过STFT传递每个子带,构建复谱图。然后,将SNMF应用于对两个来源的训练基向量的加权线性组合分解成尺寸部分。最后,通过应用逆STFT(ISTFT)和逆DTCWT(IDTCWT),可以通过子带二进制比掩码获得估计信号。通过电网视听和Timit Corpora在演讲分离任务上审查了该方法。实验结果表明,所提出的方法优于现有方法。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号