首页> 外文期刊>Circuits, systems and signal processing >Implementation of a Novel, Fast and Efficient Image De-Hazing Algorithm on Embedded Hardware Platforms
【24h】

Implementation of a Novel, Fast and Efficient Image De-Hazing Algorithm on Embedded Hardware Platforms

机译:在嵌入式硬件平台上实现新颖,快速高效的图像De-Hazing算法

获取原文
获取原文并翻译 | 示例

摘要

Improving the visibility of hazy images is desirable for robot navigation, security surveillance, and other computer vision applications. The presence of fog significantly damages the quality of the captured image, which does not only affect the reliability of the surveillance system but also produce potential danger. Therefore, developing as well as implementing a simple and efficient image de-hazing algorithm is essential. The reconfigurable computing devices like Field Programmable Gate Array and Digital Signal Processing (DSP) processors are used to implement these image processing applications. Several strategies are available for configuring these reconfigurable devices. In this paper, two approaches for hardware implementation of image de-hazing algorithm are presented. The pixel wise and gray image-based de-hazing algorithm is proposed in this paper. The key advantage of this proposed method is to estimate accurate transmission map. It eliminates the computationally complex step of refine transmission map as well as halos & artifacts in the recovered image and achieves faster execution without noticeable degradation of the quality of the de-hazed image. The proposed method is initially verified in MATLAB and compared with the existing four state-of-art methods. This algorithm is implemented on two different hardware platforms, i.e., DSP Processor (TMS320C6748) with floating pointing operations and Zynq-706 fixed-point operations. The performance comparison of hardware architectures is made with respect to Average Contrast of the Output Image, Mean Square Error, Peak Signal to Noise Ratio, Percentage of Haze Improvement and Structural Similarity Index (SSIM). The results obtained show that Zynq-706-based hardware implementation processing speed is 1.33 times faster when compared to DSP processor-based implementation for an image dimensions of 256 x 256.
机译:提高朦胧图像的可见性是可用于机器人导航,安全监控和其他计算机视觉应用程序的可见性。雾的存在显着损害了捕获图像的质量,这不仅影响监视系统的可靠性,而且产生潜在的危险。因此,开发以及实现简单有效的图像De-Hazing算法是必不可少的。可以使用现场可编程门阵列和数字信号处理(DSP)处理器等可重新配置的计算设备来实现这些图像处理应用程序。可以使用几种策略配置这些可重构设备。本文提出了两种用于图像De-HATHing算法的硬件实现方法。本文提出了基于像素明显的基于灰色图像的去振荡算法。这种提出方法的关键优势是估计准确的传输地图。它消除了恢复图像中的晕算和伪像的计算复杂步骤,并且在没有明显的DE-HATE图像的质量下降的情况下实现更快的执行。该方法最初在MATLAB中验证,与现有的四种最先进的方法进行比较。该算法在两个不同的硬件平台上实现,即DSP处理器(TMS320C6748),具有浮动指向操作和Zynq-706定点操作。硬件架构的性能比较是关于输出图像的平均对比度,均方误差,峰值信号到噪声比,雾度改善百分比和结构相似度指数(SSIM)的平均对比度。获得的结果表明,与基于DSP处理器的实现相比,基于Zynq-706的硬件实现处理速度比为256 x 256的图像尺寸相比,更快。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号