首页> 外文期刊>Circuits, systems and signal processing >Efficient Clustering of Non-coherent and Coherent Components Regardless of Sources' Powers for 2D DOA Estimation
【24h】

Efficient Clustering of Non-coherent and Coherent Components Regardless of Sources' Powers for 2D DOA Estimation

机译:无论2D DOA估计的源的力量如何,有效聚类的非相干和相干组件

获取原文
获取原文并翻译 | 示例

摘要

Conventional decorrelation techniques that resolve all signals simultaneously are not efficient in mixture scenarios of non-coherent and coherent signals. In newer methods for one-dimensional arrays, non-coherent signals and coherent groups are resolved separately. However, employing an unreliable and non-adaptive threshold is the most significant disadvantage of these methods. On the other hand, they cannot be implemented for two-dimensional arrays. To deal with these issues, the signals separation usingk-medoids clustering (SSKMC) algorithm was presented. Although the SSKMC algorithm does not have any of the shortcomings mentioned above, it relies on a basic limiting assumption that the sources should be equi-power. Therefore, the practical application of the SSKMC algorithm is facing a serious problem. In this paper, the SSKMC algorithm is extended so that it can be used even if the sources' powers are not the same. First, the two-dimensional array is divided into several parallel linear sub-arrays. Then, by defining a components separation matrix, and employing its eigenvalues, the non-coherent and coherent components are identified. The effectiveness of the proposed solution is proven by mathematical facts. Simulation results verify the proofs and the benefit of the proposed solution.
机译:传统的去相关技术,其在非相干和相干信号的混合场景中同时解决所有信号。在较新的一维阵列的方法中,不相干信号和相干组分别解决。然而,采用不可靠和非自适应阈值是这些方法的最显着的缺点。另一方面,它们不能用于二维阵列。要处理这些问题,提出了使用k-myoids聚类(SSKMC)算法的信号分离。虽然SSKMC算法没有上述任何缺点,但它依赖于源应该是Equi-Power的基本限制假设。因此,SSKMC算法的实际应用面临着严重的问题。在本文中,扩展了SSKMC算法,以便即使源的电源不一样,也可以使用它。首先,二维阵列被分成几个并行线性子阵列。然后,通过定义分量分离矩阵,并采用其特征值,鉴定了非相干和相干组分。所提出的解决方案的有效性由数学事实证明。仿真结果验证了提出的解决方案的证明和益处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号