首页> 外文期刊>Circuits, systems, and signal processing >Spoken Language Identification Based on Particle Swarm Optimisation-Extreme Learning Machine Approach
【24h】

Spoken Language Identification Based on Particle Swarm Optimisation-Extreme Learning Machine Approach

机译:基于粒子群优化 - 极端学习机方法的口语语言识别

获取原文
获取原文并翻译 | 示例

摘要

The determination and classification of natural language based on specified content and data set involves a process known as spoken language identification (LID). To initiate the process, useful features of the given data need to be extracted first in a mature process where the standard LID features have been previously developed by employing the use of MFCC, SDC, GMM and the i-vector-based framework. Nevertheless, optimisation of the learning process is still required to enable a comprehensive capturing of the extracted features' embedded knowledge. The training of a single hidden layer neural network can be done using the extreme learning machine (ELM), which is an effective learning model for conducting classification and regression analysis. Nevertheless, the learning process of this model is not entirely effective (i.e. optimised) due to the random selection of weights within the input hidden layer. This study employs ELM as the LID learning model centred upon the extraction of the standard features. The enhanced self-adjusting extreme learning machine (ESA-ELM) is one of the ELM's optimisation techniques which has been chosen as the benchmark and is enhanced by adopting a new alternative optimisation approach (PSO) instead of (EATLBO) in terms of achieving high performance. The improved ESA-ELM is named particle swarm optimisation-extreme learning machine (PSO-ELM). The generated results are based on LID with the same benchmarked data set derived from eight languages, which indicated the superior performance of the particle swarm optimisation-extreme learning machine LID (PSO-ELM LID) with an accuracy of 98.75% in comparison with the ESA-ELM LID which only achieved 96.25%.
机译:基于指定内容和数据集的自然语言的确定和分类涉及称为语言识别(LID)的过程。为了启动该过程,需要在通过使用MFCC,SDC,GMM和基于I形载体的框架的成熟过程中首先在预先开发的成熟过程中首先提取给定数据的有用功能。然而,仍然需要优化学习过程,以便全面捕获提取的特征嵌入知识。可以使用极端学习机(ELM)来完成单个隐藏层神经网络的训练,这是用于进行分类和回归分析的有效学习模型。然而,由于输入隐藏层内的重量随机选择,该模型的学习过程并不完全有效(即优化)。本研究采用ELM作为盖子学习模型以标准特征的提取为中心。增强的自调节极端学习机(ESA-ELM)是ELM的优化技术之一,这些技术已被选为基准,通过采用新的替代优化方法(PSO)而不是(Eatlbo)而不是实现高度来增强表现。改进的ESA-ELM被命名为粒子群优化 - 极限学习机(PSO-ELM)。生成的结果基于盖子,具有源自八种语言的相同基准数据集,这表明粒子群优化 - 极端学习机盖(PSO-ELM LID)的优越性,与ESA相比,精度为98.75% -elm盖子只实现了96.25%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号