首页> 外文期刊>Circuits, systems, and signal processing >A Memristor Neural Network Using Synaptic Plasticity and Its Associative Memory
【24h】

A Memristor Neural Network Using Synaptic Plasticity and Its Associative Memory

机译:一种使用突触塑性及其关联记忆的忆阻座神经网络

获取原文
获取原文并翻译 | 示例

摘要

The passivity, low power consumption, memory characteristics and nanometer size of memristors make them the best choice to simulate synapses in artificial neural networks. In this paper, based on the proposed associative memory rules, we design a memristor neural network with plasticity synapses, which can perform analog operations similar to its biological behavior. For the memristor neural network circuit, we also construct a relatively simple Pavlov's dog experiment simulation circuit, which can effectively reduce the complexity and power consumption of the network. Some advanced neural activities including learning, associative memory and three kinds of forgetting are realized based on the spiking-rate-dependent plasticity rule. Finally, the Simulation program with integrated circuit emphasis is used to simulate the circuit. The simulation results not only prove the correctness of the design, but also help to realize more efficient, simpler and more complex analog circuit of memristor neural network and then help to realize more intelligent, smaller and low-power brain chips.
机译:存储器的被动,低功耗,存储器特性和纳米尺寸使它们成为模拟人工神经网络中的突触的最佳选择。在本文的基础上,基于拟议的关联内存规则,我们设计了一种具有塑性突触的忆阻神经网络,其可以执行类似于其生物行为的模拟操作。对于Memristor神经网络电路,我们还构建了一个相对简单的Pavlov的狗实验模拟电路,可以有效地降低网络的复杂性和功耗。基于尖刺率依赖的可塑性规则实现了一些高级神经活动,包括学习,关联记忆和三种遗忘。最后,使用集成电路强调的仿真程序用于模拟电路。仿真结果不仅可以证明设计的正确性,还有助于实现更高效,更简单,更复杂的忆内网络的模拟电路,然后有助于实现更智能,更小和低功耗的脑芯片。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号