首页> 外文期刊>Circuits, systems, and signal processing >Optimal Nonlinear Signal Approximations Based on Piecewise Constant Functions
【24h】

Optimal Nonlinear Signal Approximations Based on Piecewise Constant Functions

机译:基于分段恒定函数的最佳非线性信号近似

获取原文
获取原文并翻译 | 示例

摘要

We provide here an optimal method of approximating a signal by piecewise constant functions. To this end, we minimize over the signal subdomains a fidelity term between the signal and its corresponding piecewise approximations; subdomains being determined by the number of approximations samples used for. An optimal recursive relationship is then obtained and proven, which helps us to derive the proposed approximation algorithm. The complexity of the algorithm is O(MN2), where N is the number of samples of the processed signal and M is the number of piecewise constant approximation functions. There are different techniques to approximate a signal using piecewise constant functions, wavelet decomposition is one of them by means of a Haar wavelet. Our approach is then compared to linear and nonlinear wavelet-based approximations, and both qualitative and quantitative results are provided on various tested signals, showing the efficiency of the proposed approach.
机译:我们在这里提供了通过分段恒定函数近似信号的最佳方法。为此,我们最小化信号子域在信号和相应的分段近似之间的保真术语;由用于使用的近似样本的数量确定的子域名。然后获得并经过证明的最佳递归关系,这有助于我们得出所提出的近似算法。算法的复杂性是O(MN2),其中N是处理信号的样本的数量,M是分段恒定近似函数的数量。存在不同的技术来近似使用分段恒定函数的信号,小波分解是借助于哈尔小波的光波分解。然后将我们的方法与基于线性和非线性小波的近似进行比较,并且在各种测试信号上提供定性和定量结果,显示所提出的方法的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号