首页> 外文期刊>Circuits, systems, and signal processing >An Integrated Hybrid CNN-RNN Model for Visual Description and Generation of Captions
【24h】

An Integrated Hybrid CNN-RNN Model for Visual Description and Generation of Captions

机译:用于视觉描述和字幕的集成混合CNN-RNN模型

获取原文
获取原文并翻译 | 示例

摘要

Video captioning is currently considered to be one of the simplest ways to index and search data efficiently. In today's era, suitable captioning of video images can be facilitated with deep learning architectures. The focus of past research has been on providing image captions; however, the generation of high-quality captions with suitable semantics for different scenes has not yet been achieved. Therefore, this work aims to generate well-defined and meaningful captions to images and videos by using convolutional neural networks (CNN) and recurrent neural networks in combination. Beginning with the available dataset, features of images and videos were extracted using CNN. The extracted feature vectors were then utilized to generate a language model with the involvement of long short-term memory for individual word grams. The generated meaningful captions were trained using a softmax function, for performance computation using some predefined evaluation metrics. The obtained experimental results demonstrate that the proposed model outperforms existing benchmark models.
机译:视频标题目前被认为是有效索引和搜索数据的最简单方法之一。在今天的时代,可以通过深度学习架构促进适用的视频图像标题。过去研究的重点是提供图像标题;然而,尚未实现为不同场景具有合适语义的高质量标题。因此,这项工作旨在通过使用卷积神经网络(CNN)和反复性神经网络组合来生成图像和视频的明确定义和有意义的标题。从可用数据集开始,使用CNN提取图像和视频的功能。然后利用提取的特征向量来生成语言模型,其中包括单词克的长短短期记忆。使用Softmax函数训练产生的有意义的标题,用于使用一些预定义评估度量的性能计算。所获得的实验结果表明,所提出的模型优于现有的基准模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号