首页> 外文期刊>Circuits, systems, and signal processing >Two-Dimensional DOA Estimation via Shifted Sparse Arrays with Higher Degrees of Freedom
【24h】

Two-Dimensional DOA Estimation via Shifted Sparse Arrays with Higher Degrees of Freedom

机译:通过具有较高自由度的移位稀疏阵列进行二维DOA估计

获取原文
获取原文并翻译 | 示例

摘要

Sparse antenna arrays provide larger virtual arrays to estimate the direction of arrivals (DOAs) of more sources than the number of physical antennas in the array. While the degrees of freedom (DOF) can be increased by the special structure of the antenna array, a shift in the antenna positions can generate new lags in the difference co-array; hence, more sources can be resolved. In this paper, we propose shifted sparse array structures composed of two overlapping arrays shifted by one lag. It is shown that the shifting property fills the holes in the co-array, which yields larger virtual arrays. We derive stationary and moving array models where overlapping sparse arrays can be realized. The proposed shifting property is applied to coprime, nested and sparse linear arrays, and we show that the proposed technique guaranteed to increase the DOF. Using the proposed sparse array structures, we also propose a 2-D DOA estimation algorithm by utilizing the cross-covariance matrix of an L-shaped sparse array. The performance of the proposed approach is evaluated through numerical simulations, and we show that it can resolve more sources than the conventional sparse arrays with the same number of physical antennas, providing less computational complexity.
机译:与阵列中的物理天线数量相比,稀疏天线​​阵列提供了更大的虚拟阵列来估计更多源的到达方向(DOA)。虽然可以通过天线阵列的特殊结构来提高自由度(DOF),但是天线位置的偏移会在差分协阵列中产生新的滞后;因此,可以解决更多来源。在本文中,我们提出了移位的稀疏数组结构,该结构由两个重叠的数组移动了一个滞后。结果表明,移位属性填充了协阵列中的孔,从而产生了更大的虚拟阵列。我们推导了可以实现重叠稀疏数组的固定和移动数组模型。所提出的移位特性被应用于互质数,嵌套和稀疏线性阵列,并且我们证明了所提出的技术保证了增加自由度。使用提出的稀疏阵列结构,我们还利用L形稀疏阵列的互协方差矩阵提出了一种二维DOA估计算法。通过数值仿真评估了该方法的性能,结果表明,与具有相同数量物理天线的常规稀疏阵列相比,该方法可以解析更多的源,计算复杂度更低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号