首页> 外文期刊>Circuits, systems, and signal processing >A Primer on Deep Learning Architectures and Applications in Speech Processing
【24h】

A Primer on Deep Learning Architectures and Applications in Speech Processing

机译:深度学习架构及其在语音处理中的应用入门

获取原文
获取原文并翻译 | 示例

摘要

In the recent past years, deep-learning-based machine learning methods have demonstrated remarkable success for a wide range of learning tasks in multiple domains. They are suitable for complex classification and regression problems in applications such as computer vision, speech recognition and other pattern analysis branches. The purpose of this article is to contribute a timely review and introduction of state-of-the-art and popular discriminative DNN, CNN and RNN deep learning techniques, the basic framework and algorithms, hardware implementations, applications in speech, and the overall benefits of deep learning.
机译:在过去的几年中,基于深度学习的机器学习方法已在多个领域的广泛学习任务中取得了显著成功。它们适用于计算机视觉,语音识别和其他模式分析等应用程序中的复杂分类和回归问题。本文的目的是及时回顾和介绍最新的和流行的歧视性DNN,CNN和RNN深度学习技术,基本框架和算法,硬件实现,语音应用以及整体利益深度学习。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号