首页> 外文期刊>Circuits, systems, and signal processing >Speaker Identification for OFDM-Based Aeronautical Communication System
【24h】

Speaker Identification for OFDM-Based Aeronautical Communication System

机译:基于OFDM的航空通信系统的说话人识别

获取原文
获取原文并翻译 | 示例

摘要

Although a lot of research has been done on speaker identification in the presence of noise and channel variation, to the best of our knowledge, no work has been reported for aeronautical applications. In this paper, we aim to fulfill this goal by developing a Speaker Identification System (SIS) for future aeronautical communications systems. Furthermore, we present a novel feature extraction scheme based on multi-resolution analysis. The proposed features called SMFCC use Mel Frequency Cepstral Coefficients (MFCCs) features of stationary wavelet transform sub-bands. The extracted features are modeled using the i-vector approach, and support-vector machines are adopted as a back-end classifier. The performance of the proposed SIS is evaluated using two publicly available databases. Comparison of the proposed approach with the baseline MFCC feature extraction shows the feasibility and the robustness of the proposed method. Besides the noise reduction, the identification accuracy is improved by about 12% at higher signal-to-noise ratios and reaches 97.33% as compared to 88.33% using MFCC for ATCOSIM database.
机译:尽管在存在噪声和声道变化的情况下,已经对说话人识别进行了大量研究,但据我们所知,还没有关于航空应用的报道。在本文中,我们旨在通过为未来的航空通信系统开发扬声器识别系统(SIS)来实现这一目标。此外,我们提出了一种基于多分辨率分析的新颖特征提取方案。所提出的称为SMFCC的特征使用固定小波变换子带的Mel频率倒谱系数(MFCC)特征。使用i-vector方法对提取的特征进行建模,并采用支持向量机作为后端分类器。拟议的SIS的性能使用两个可公开获得的数据库进行评估。将该方法与基线MFCC特征提取进行比较,显示了该方法的可行性和鲁棒性。除了降低噪声外,在较高的信噪比下,识别精度还可提高约12%,与使用ATCOSIM数据库的MFCC的88.33%相比,可达到97.33%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号