首页> 外文期刊>Circuits, systems, and signal processing >An Adaptive Denoising Algorithm for Chaotic Signals Based on Improved Empirical Mode Decomposition
【24h】

An Adaptive Denoising Algorithm for Chaotic Signals Based on Improved Empirical Mode Decomposition

机译:基于改进的经验模态分解的混沌信号自适应去噪算法

获取原文
获取原文并翻译 | 示例

摘要

It is difficult to determine the threshold of mode cell in the interval-thresholding algorithm, when it is used to denoise chaotic signals. In this paper, an adaptive denoising algorithm is proposed for chaotic signals based on improved empirical mode decomposition. First, the noisy chaotic signal is decomposed into the intrinsic mode functions (IMFs) by improved complete ensemble empirical mode decomposition. Then, the zero-crossing scale thresholding denoising algorithm is used to denoise the IMFs with different thresholds. The optimal threshold is obtained by the Durbin-Watson criterion. With the optimal threshold, the final denoised chaotic signal is obtained. The proposed algorithm effectively solves the issue mentioned above. The experimental results show the proposed algorithm can denoise noisy chaotic signals in different conditions effectively and is better than other existing algorithms.
机译:当间隔阈值算法用于对混沌信号进行去噪时,很难确定模式单元的阈值。本文提出了一种基于改进的经验模态分解的混沌信号自适应去噪算法。首先,通过改进的完整整体经验模式分解,将有噪声的混沌信号分解为固有模式函数(IMF)。然后,使用零交叉比例阈值去噪算法对具有不同阈值的IMF进行去噪。最佳阈值通过Durbin-Watson准则获得。利用最佳阈值,可以获得最终的去噪混沌信号。该算法有效解决了上述问题。实验结果表明,该算法可以有效地对不同条件下的噪声混沌信号进行去噪,效果优于现有算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号